ISAAC-II, a program which solves physics problems stated in English, will be demonstrated in real time. A notebook of problems which have been solved by the program will be displayed; the demonstration will include problems taken from this set. In addition, new problems in elementary physics (stated entirely in English, i.e., not requiring a diagram as part of the problem statement) contributed by conference attendees will be accepted, and will be attempted by the program.

This program, a successor to our earlier ISAAC program, first parses the sentences of the problem statement to build an internal model of the objects in the problem and their relationships; this model is stated in terms of real-world objects (cars, people, etc.). Using rules which examine qualitative and quantitative features of objects and relationships, the program chooses views of objects (or groups of objects) as physical systems (e.g., "rigid body" or "uniform acceleration from rest"). This set of models gives rise to a set of equations which can be solved to find the answer to the problem. The internal model of the objects is also used to generate a picture of the problem; an example of such a picture (generated by ISAAC) is shown in Figure 1.

The major difference between this program and ISAAC lies in the choice of problem solving methods. ISAAC could solve only rigid body statics problems (which limited the range of solution methods needed); it also wrote a large number of equations which were solved by brute force. ISAAC-II has a larger repertoire of problem solving methods (even for the "sane" type of problem); this enables it to select the best method for a particular problem. The resulting solutions are less complex algebraically, and are closer to the solutions produced by human experts.

Physics problem solving is an important research area because the techniques used for solving physics problems, when fully developed, can aid teaching of physics and can be used for intelligent computer-aided engineering analysis and design.

This research was supported by NSF award No. SED-7912803 in the Joint National Institute of Education - National Science Foundation Program of Research on Cognitive Processes and the Structure of Knowledge in Science and Mathematics.