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A b s t r a c t 

T h i s paper p r e s e n t s an ove rv iew of a game p l a y i n g 
model wh ich is based on human p e r c e p t u a l and p r o b l e m 
s o l v i n g a b i l i t i e s . The r e p r e s e n t a t i o n o f games, ac
q u i s i t i o n o f r u l e s , l e a r n i n g o f s t r a t e g i e s , and s e l e c 
t i o n o f moves are o u t l i n e d . D e t a i l s o f move s e l e c t i o n , 
i n c l u d i n g scann ing o f t he b o a r d , use o f f a m i l i a r p a t 
t e r n s t o suggest move c a n d i d a t e s , e v a l u a t i o n o f moves, 
and lookahead are d e s c r i b e d . F i n a l l y , t h e r e i s a d i s 
c u s s i o n o f t h e means by wh ich t h e model l e a r n s to p l a y 
a b e t t e r game. 

I n t r o d u c t i o n 

People can be t a u g h t a b o a r d game by means of n a t 
u r a l language i n s t r u c t i o n , wh ich may or may n o t be ac
companied by a d e m o n s t r a t i o n . Moves made by b e g i n n e r s 
a re a lmos t a lways l e g a l , o f t e n b a d , and p r o b a b l y never 
random. People can improve t h e q u a l i t y o f t h e i r p l a y 
w i t h e x p e r i e n c e , and can a l s o be t a u g h t (by a book or 
a t u t o r ) p a r t i c u l a r moves, p a t t e r n s o f p i e c e s , o r s t r a 
t e g i c c o n c e p t s . A model of human game p l a y i n g s h o u l d 
e x h i b i t a l l o f t hese c h a r a c t e r i s t i c s . One p o s s i b l e 
model i s deve loped i n t h i s p a p e r . The ma jo r assump
t i o n s o f t h e model a re b e i n g t e s t e d t h r o u g h expe r imen ts 
w i t h human game p l a y e r s . I n t h i s p a p e r , we c i t e our 
e x p e r i m e n t a l s t u d i e s i n t h e f o o t n o t e s . 

Our model i s embedded in t h e f ramework o f a l a r g e r 
model o f human i n f o r m a t i o n p r o c e s s i n g wh ich has been 
d e s c r i b e d in Rume lha r t , L i n d s a y & Norman19 and Rumel
h a r t & Norman 2 0 . The da tabase s t r u c t u r e i s t h a t o f a 
semant i c ne twork c o n s i s t i n g o f nodes connec ted by b i -
d i r e c t i o n a l , l a b e l l e d r e l a t i o n s . A p a r s e r t r a n s l a t e s 
E n g l i s h i n t o t he d a t a b a s e . A programming l anguage , 
SOL, wn ich i s a subse t o f E n g l i s h , a l l o w s t h e u s e r t o 
i n t e r a c t w i t h t he da tabase . There i s n o i n h e r e n t d i s 
t i n c t i o n made between d a t a and p r o c e d u r e s . A l t h o u g h 
t h i s pape r i l l u s t r a t e s many o f t h e mechanisms necessary 
f o r t h e i m p l e m e n t a t i o n o f t h e game p l a y i n g m o d e l , t h e 
comple te i m p l e m e n t a t i o n has n o t y e t been a c c o m p l i s h e d . 

A c q u i r i n g t he Rules of a New Game 

In l e a r n i n g to p l a y a game t h e r e a re two d i s t i n c t 
s t a g e s : d e f i n i n g t he t a s k ( l e a r n i n g t h e r u l e s o f t h e 
game), and s e a r c h i n g f o r a s o l u t i o n ( p l a y i n g t h e game 
t o w i n ) . I n o r d e r t o s t a r t p l a y i n g a game, knowledge 
o f t h r e e t h i n g s i s n e c e s s a r y : t h e goa l o f t h e game; t h e 
u n i v e r s e w i t h i n wh ich t h e game takes p l a c e ; and t h e 
r u l e s g o v e r n i n g a c t i o n s w i t h i n t h a t u n i v e r s e . Two ques
t i o n s a r i s e w i t h i n t h i s c o n t e x t : (a) What does i t t a k e 
to u n d e r s t a n d the r u l e s of a game? (b) How a re t hese 
r u l e s r e p r e s e n t e d once t h e y a re a c q u i r e d ? 

U n d e r s t a n d i n g the Rules of a Game 

I t i s a lways p o s s i b l e t o s t a t e t h e r u l e s o f a game 
in E n g l i s h . Most p e o p l e can unde rs tand such r u l e s and 
can s t a r t p l a y i n g a l e g a l game once t h e y have h e a r d 
them. C l e a r l y , t h e s e r u l e s wou ld b e mean ing less i f t h e 
words c o m p r i s i n g them were n o t u n d e r s t o o d . The s t u d y 
o f how t h i s u n d e r s t a n d i n g i s a c q u i r e d c o n s t i t u t e s a ma
j o r i n v e s t i g a t i o n i n i t s own r i g h t t h a t w i l l n o t b e 

pe r fo rmed h e r e . For o u r mode l , we assume t h a t t h i s 
l e v e l o f u n d e r s t a n d i n g has a l r e a d y been a c h i e v e d . T h i s 
assumpt ion has two i m p o r t a n t i m p l i c a t i o n s ; F i r s t , a l l 
t h e concepts c o n s i d e r e d t o b e i m p o r t a n t f o r u n d e r s t a n d 
i n g t h e r u l e s o f games are i n c o r p o r a t e d i n t o t h e model 
( i . e . , e n t e r e d b y hand) i n advance. Second, t h e model 
o n l y a p p l i e s t o t h e b e h a v i o r o f a d u l t s who can be as 
sumed to possess t h i s knowledge . 

The I n t e r n a l R e p r e s e n t a t i o n of a Game 

A l t h o u g h t h e r e i s a l a r g e v a r i e t y o f b o a r d games, 
a l l games have much in common. The e x i s t e n c e of a gen
e r a l s t r u c t u r e wh ich r e p r e s e n t s t h e common f e a t u r e s i s 
i m p l i c i t l y assumed whenever t h e r u l e s o f a game a re de
s c r i b e d . B u i l d i n g a n i n i t i a l i n t e r n a l r e p r e s e n t a t i o n 
o f a game c o n s i s t s o f f i l l i n g i n s p e c i f i c arguments i n 
t h e v a r i a b l e s l o t s o f t h a t g e n e r a l f rame. Those v a r i a 
b l e s can be a n y t h i n g f rom s i n g l e va lues to complex 
s t r u c t u r e s . Appendix A g i v e s ou r r e p r e s e n t a t i o n o f t h e 
f rame f o r games. 

G e n e r a t i n g P r i m i t i v e S t r a t e g i e s 

Mere knowledge o f t he r u l e s o f t he game wou ld r e 
s u l t i n t h e g e n e r a t i o n o f random ( though l e g a l ) moves. 
But even b e g i n n e r s of a game do n o t p l a y r andom ly .3 
The nonrandom nature o f p l a y i n g i s i n h e r e n t in game 
p l a y i n g , s i n c e games are by d e f i n i t i o n a goa l d i r e c t e d 
a c t i v i t y . As t he game s t a r t s , t he p l a y e r must a l r e a d y 
have a s e t o f p r i m i t i v e s t r a t e g i e s f o r p l a y i n g t h a t 
p a r t i c u l a r game. 

For example , " c a p t u r e more p i e c e s " i s a p r i m i t i v e 
s t r a t e g y f o r c h e c k e r s , w h i l e " g e t more i n a row" i s a 
p r i m i t i v e s t r a t e g y f o r Gomoku.4 These p r i m i t i v e s t r a 
t e g i e s have i n common t h e n o t i o n o f making p r o g r e s s on 
some d imens ion such as " c a p t u r e " or "number of p i e c e s 
i n a r o w . " The d imens ions f o r wh ich p r i m i t i v e s t r a t e 
g i e s a re genera ted a re t hose e x p l i c i t l y ment ioned i n 
t h e r u l e s o f t h e game. A m e t a - s t r a t e g y i s needed t o 
d e t e r m i n e how " p r o g r e s s " i s t o b e c h a r a c t e r i z e d f o r 
each d i m e n s i o n . One way to do t h i s is to app ly means-
ends a n a l y s i s i n o r d e r t o see whe the r a goa l s t a t e f o r 
a p a r t i c u l a r d imens ion may be a t t a i n e d by s u c c e s s i v e ap
p l i c a t i o n s o f a s i n g l e o p e r a t i o n . I f s o , t h a t o p e r a 
t i o n i s s i n g l e d o u t as a p r i m i t i v e s t r a t e g y . The sym
m e t r i c n a t u r e o f most games a l l o w s the c r e a t i o n o f com
p l e m e n t a r y p r i m i t i v e s t r a t e g i e s f o r imped ing t h e op 
p o n e n t ' s p r o g r e s s on a g i v e n d i m e n s i o n . 

Move S e l e c t i o n 

Here is a quick overview of the f low of processing 
performed by our model fo l l ow ing the opponent's move. 
F i r s t , i t t r i e s to f i nd a reason f o r the opponent's 
move: the representat ion of the current s i t u a t i o n is 
updated in l i g h t of that reason. The model may then 
e i the r respond to the opponent's move, continue w i th 
the execution of a prev ious ly created p l a n , or generate 
a new p lan . 

The evaluat ion of newly created pat terns i d e n t i f i e d 
by a scan of the board s ingles out the reason f o r the 



opponent's move. Plans are sequences of moves leading 
to a s i t u a t i o n which is more favorable than the current 
one. The moves w i t h i n the plan sequences are o r i g i n a l 
ly suggested e i ther by f am i l i a r patterns or by s t r a t e 
gies. The suggested moves undergo evaluat ion during a 
lookahead process whose depth is l im i ted by the con
s t r a i n t s of a working memory. 

Of necessi ty , a l l of these processes i n te rac t heav
i l y . I t w i l l be convenient, however, to discuss i n 
d i v i dua l l y the fo l low ing segments of the model: scan
ning the board, f a m i l i a r pa t te rns , move evaluat ion, 
lookahead, and f i nd ing a reason fo r the opponent's move. 

Scanning the Board 

The game board serves as an external memory for 
human p layers . This external memory is simulated by a 
2-dimensional array which remains conceptually d i s t i n c t 
from the model. The problem of scanning the board may 
be thought of as a problem of parsing a 2-dimensional 
s t r i n g . Top-down parsing algorathms which have been 
used as a mechanism fo r the analysis of l i ne drawings9 , 

1 , 1 5 , capture the p red ic t i ve power and analysis-by-
synthesis nature of human v isua l processing. Bottom-
up parsers ( e . g . , Ledley ) capture the essence of or
ganizat ion of v isua l scenes for which there are no ex
pectat ions. They may also miss important conf igura
t i ons , which is a disadvantage fo r an optimal game 
p lay ing machine, but a necessity fo r a r e a l i s t i c model 
of human game p lay ing . 

The scanning rout ine used by our model begins wi th 
a bottom-up parse of the board, but becomes a top-down 
parse as soon as enough informat ion is gathered to gen
erate some expectat ions. The scan i t e ra tes through a l l 
board locat ions whose contents have changed as a resu l t 
of the las t move, t r ea t i ng each such locat ion as the 
o r i g i n of a bottom-up parse. When scanning from a 
given o r i g i n the model per iphera l l y not ices a l l the im
mediate neighbors o f that o r i g i n , i . e . , a l l pieces 
w i th in the 3x3 area containing the o r i g i n and i t s neigh
bors. I t i d e n t i f i e s those combinations which e i ther 
cons t i tu te complete patterns or are possible members of 
some larger pa t te rns . 

If a larger pa t te rn is marked as p o t e n t i a l l y pre
sent, the scan then switches to i t s top-down phase and 
ac t i ve ly t r i e s to f i n d that larger pa t te rn . The ident i 
f i c a t i o n of pat terns is made by network matching rou
t ines which compare the current view wi th a network 
containing descr ipt ions of f a m i l i a r pat terns. 

The top-down parse s ta r t s wi th an attempt to ident i 
fy f am i l i a r pat terns derived from Gestalt p r i nc ip les of 
human percept ion. The three Gestalt p r inc ip les inc lud
ed in the model are those of p rox im i ty , s i m i l a r i t y , and 
con t inu i ty .11 Proximity is incorporated by having the 
scan move outwards from the o r i g i n in expanding concen
t r i c c i r c l e s . The p r i n c i p l e of s i m i l a r i t y is embodied 
by marking "piece next to a s im i la r p iece" as a fami l iar 
pa t te rn fo r a l l games. The p r i n c i p l e of con t inu i t y is 
incorporated by regarding l ines of pieces as inherent ly 
f a m i l i a r pa t te rns . Consequently, a po ten t i a l l i ne of 
pieces seen in the i n i t i a l 3x3 area w i l l r esu l t in the 
i n i t i a t i o n of a top-down search fo r that l i n e . 

Note that although pat terns are " f a m i l i a r , " they 
are not necessar i ly meaningful w i t h i n the context of a 
p a r t i c u l a r game. Thus, a row of four bishops side by 
side on a chess board w i l l be ca l led " f a m i l i a r " by the 
Gestalt p r i n c i p l e s , although the i n t r i n s i c importance 
of such a conf igura t ion is not at a l l c lear . 

Once simple Gestal t groupings are recognized, the 
top-down scan continues looking for other potential 
patterns ( i f other po ten t i a l ones are ind ica ted) . The 
remaining ones are those which are important w i t h i n the 
context of the spec i f i c game cur ren t l y being p layed. 6 

Fami l iar Patterns 

The a b i l i t y to recognize f a m i l i a r conf igurat ions 

of pieces on the board is c ruc ia l f o r the playing of 
any game. A person who recognizes a f am i l i a r pa t te rn 
can re fe r to i t s representat ion in his long-term memory 
by using a s ing le l a b e l , thus f reeing valuable space. 
Addi t iona l savings are obtained i f the pat tern is as
sociated wi th a wel l known sequence of suggested moves, 
since these suggestions need not be generated in the 
normal lookahead manner. A large reper to i re of familiar 
patterns is one of the charac te r i s t i cs of s k i l l f u l 
p layers . 8 ,23 

Patterns are represented in the model by means of 
act ive semantic networks of the type described in Rum-
e lhar t G Norman.20 Such networks may be t reated e i ther 
as data to be consulted during the recogni t ion of pat
terns ( i . e . , as a table of rewr i te rules during a v i su 
al parse) or as procedures which themselves d i rec t the 
recogni t ion process. In f a c t , the current scanning a l 
gorithm invokes the procedural de f i n i t i ons during i t s 
top-down phase, and t reats the same de f i n i t i ons as data 
during i t s bottom-up phase. 

This format of representat ion appears to be both 
powerful and general. If we represent spec i f i c loca
t ions and pieces, the representat ion becomes equivalent 
to that of Simon and Gi lmar t in 's MAPP program.23 Non-
spec i f i c locat ions and or ien ta t ions allow us to have 
in terna l representations which are homomorphic to the 
rea l world conf igurat ions. This was the type of repre
sentat ion used by Murray and Elcock for Gomoku.17 Re
cursive de f i n i t i ons of groups of stones in Go, found 
useful by Ryder,-* are also easy to handle in th i s f o r 
mat. A sequence of suggested moves for a f am i l i a r pat
tern is represented as a procedure which, when executed, 
returns wi th advice relevant w i t h in the context of a 
pa r t i cu l a r game. For example, i f the pat tern " four in 
a row" is discovered in the game of Gomoku, a procedure 
is act ivated which looks for a vacant square next to 
and in a l i ne wi th the pa t te rn , and recommends moving 
to that square. Note how t h i s contrasts wi th the 
"meaningless" chess pat tern of four bishops in a row 
described e a r l i e r . 

Evaluation 

The evaluat ion of moves is based on the dimensions 
stored under a "s t ra tegy" node. For example, on the 
dimension of " l e n g t h , " a s t r i ng of f i ve in a row has a 
greater value than a s t r i n g of four in a row. If we 
are comparing two moves along the dimension of "cap
ture va lue , " we might compare the number of pieces cap
tured [ e . g . , in checkers), or the numerical value which 
some book or t u t o r has t o l d us to assign to the cap
tured pieces ( e . g . , in chess). Relevant dimensions are 
stored e x p l i c i t l y under the strategy node, but are d i f -
ferent fo r d i f f e ren t games. 

Actual numerical values are not computed in the cur
rent model, and at present there is no ordering of the 
sequence in which d i f f e ren t dimensions are encountered, 
but we allow an ordering of the nodes w i th in a given 
dimension. 

When a pat te rn has been found by the scan, candidate 
moves w i l l be suggested if there are e x p l i c i t recom
mendations associated wi th the pa t te rn . If such recom
mendations are not found, the strategy node provides 
suggestions by po in t ing out a dimension and a way of 
increasing values on that dimension { e . g . , adding a 
piece next to i t s neighbors to increase length) . 

A pairwise comparison of successively generated can
didates is made along relevant dimensions (as suggested 
by s t ra teg ies) in order to choose the best move. I f , 
during the course of these comparisons, a candidate is 
found which has a value above " s a t i s f i c i n g " 1 8 on any 
dimension, the evaluat ion terminates and that-candidate 
becomes the model's choice fo r the next move. 

When t r y i n g to f i n d the best of two candidate moves, 
it is possible that they w i l l have the same values on 
the dimension on which they are compared, or that these 
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values can only be determined if they lead to a f a m i l 
i a r conf igura t ion of pieces w i t h i n several moves. I f 
t h i s is the case, we ca l l a lookahead procedure which 
looks for recommended moves fo r the opponent and com
pares the outcomes of these recommended moves (which 
i t s e l f may requi re another c a l l to the lookahead pro
cedure) . Since there are normally several a l t e rna t i ve 
moves, the only recommended moves which are considered 
for evaluat ion (and possible f u r the r lookahead) are 
those which have the highest p robab i l i t y of being r e 
a l i zed . If we could ob jec t i ve ly decide on a move for 
the opponent using an unbiased evaluat ion scheme, then 
our move se lec t ion technique would be formal ly equiva
lent to minimaxing. People t y p i c a l l y do not perform 
t h i s type of ana lys is , since they are subject to a bias 
when t r y i n g to carry out a p lan ; they may assume that 
pieces only have a p a r t i c u l a r ro le ( e . g . , o f fensive or 
defensive) or only move w i th a spec i f i c i n ten t ( e . g . , 
"he is t r y i n g to capture my b ishop") . In the model, 
bias operates by i n s t r u c t i n g the scanning rout ine to 
look only for pieces which f u l f i l l ce r ta in ro les . In 
t h i s way, we s t i l l choose "best" moves fo r the opponent, 
but bias y ie lds what we c a l l "sub jec t ive minimaxing." 

Lookahead 

The model's actual lookahead may be regarded as a 
product of many i n t e rac t i ng processes. These processes 
(which we w i l l discuss in d e t a i l below) inc lude: an ac
t i v e working memory which e f f e c t i v e l y l i m i t s the depth 
of lookahead; heu r i s t i cs fo r narrowing the se lec t ion of 
move candidates; a mechanism fo r making hypothet ica l 
moves; a l im i t ed backup capab i l i t y which r e s t r i c t s the 
model to a "progressive deepening" search. The actual 
lookahead t y p i c a l l y proceeds by means of a forward 
search, but capab i l i t y f o r means-ends analysis is also 
provided. Plans are t rea ted as an outcome of the look-
ahead process. 

Working Memory. A l l ac t ive processing takes place 
w i t h i n the confines of a l im i t ed size working memory. 
The size r e s t r i c t i o n is regarded as an asset to the 
model, as it necessitates garbage-col lect ion and chunk
ing of in format ion. The contents of working memory is 
a homogeneous mixture of data, procedures, and po in ters 
to items in long-term memory. Achieving a given per
formance leve l ( e . g . , remembering 7±2 random d i g i t s 1 6 ) 
depends upon a model's spec i f i c implementation. We are 
cur ren t ly considering d i f f e r e n t size l i m i t a t i o n s , and 
the f i n a l choice is l i k e l y to be in the order of hun
dreds of nodes. This conceptual izat ion is an adapta
t i o n of the one proposed by Newell and Simon.18 

Heur is t i c Candidate Se lect ion. The se lec t ion of 
only a few move candidates fo r f u r the r lookahead is an 
automatic resu l t of the way in which these candidates 
are suggested. The scan of the board concentrates on 
those areas which have changed as the resu l t of a move. 
Some candidate moves are suggested by f a m i l i a r pat terns 
which resu l t from th i s loca l i zed scan. Other candidate 
moves are suggested by advice from d i f f e r e n t dimensions 
known to the st rategy node ( e . g . , " increase l eng th " ) . 
F i n a l l y , if good move candidates which were prev ious ly 
considered are s t i l l in working memory, a re-analys is 
of these candidates may be performed. The number of 
candidates is o f ten small in h igh ly constrained s i t u a 
t i o n s , such as dynamic piece exchange. Since working 
memory size is constant, a small number of candidates 
enhances the depth of lookahead. 

Hypothet ica l Moves. Since the array represent ing 
the board is regarded as an external memory, imaginary 
moves do not a f f ec t t h i s ar ray . A hypothet ica l move is 
made by asser t ing a p ropos i t ion which includes (among 
other th ings) a "beg inn ing -s ta te , " an "end -s ta te , " and 
the move which causes the t r a n s i t i o n between the two 
s ta tes . The end-state fo r a given move is the resu l t 
of augmenting the beginning-state f o r that move w i th 
the changes caused by tha t move- The beginning-state 

fo r a move is simply the end-state of the preceding 
move, if such a preceding move ex is ted . The beginning-
s ta te fo r the f i r s t imaginary move is empty, since no 
changes have yet been imagined. During lookahead, the 
board scanning rout ine scans the real world array as 
described e a r l i e r , but i t also consults the l a tes t as
serted end-state in order to co r rec t l y locate imaginary 
pieces. If many changes are imagined, there is the dan
ger that o ld ones w i l l be los t as working memory f i l l s 
up, in which case board scanning errors w i l l occur. 

Progressive Deepening. The search path fol lowed by 
humans during lookahead is best character ized by the 
term "progressive deepen ing . " 8 ' 1 8 This term re fe rs to 
the tendency of people to r e v i s i t a given lookahead path 
in order to explore a s ing le new side path or to extend 
the depth of the o r i g i n a l path. The search path of a 
subject so lv ing a chess problem thus looks l i k e a suc
cession of many s t r a i gh t paths, w i th only a few cases of 
t rue backup to pos i t ions one or two moves back in the 
p a t h . 1 8 If the model has to back up, it may do so 
e i ther by going back to the rea l board and beginning 
another lookahead, or by undoing the la tes t hypothet ica l 
move (only the most recent ly asserted propos i t ion is ac
cess ib le , and the sequence of moves cannot be deduced 
from the end-states) . 

Old proposi t ions are recognized by a pat te rn match
ing p r i m i t i v e i f they are s t i l l w i t h i n working memory 
when re-asserted by the model. A simple " te rm ina t ion" 
f l a g on old proposi t ions allows the model to inves t iga te 
other move candidates and thus avoid fo l low ing the exact 
same path each t ime. Proposit ions become flagged as 
soon as t h e i r end-state imaginary board pos i t ions evalu
ate to some c r i t e r i o n l e v e l . Upon r e - i n i t i a t i n g look-
ahead, the model re-explores par t of the most recent 
path , branching o f f when i t t r i e s to re-asser t a propos
i t i o n which has been f lagged as te rmina l . 

Plans. Beginning wi th the current rea l board pos i 
t i o n , each asserted propos i t ion is connected by a " f o r 
ward" l i n k to the asserted propos i t ion which fol lows i t . 
One-move backup resu l t s in mu l t i p le l inks extending 
forward from the target of the backup, but a return to 
the s t a r t i n g pos i t i on causes a brand new sequence to be
come l i nked . Thus, if the sequence of imaginary moves 
A,B,C,D is fol lowed bv a re tu rn to the o r i g i n a l pos i t i on 
and then by the sequence A,B,C,E, the two structures 
symbolized by 

AthenB3thwizCthen>0 

a n d A , t h e n - * E ' t h e n > C ' t h e n > E 

w i l l be constructed. A' and A w i l l be complex s t ruc 
tures represent ing two instances of the verb "move" 
w i th i d e n t i c a l arguments. The other l e t t e r s have a 
s im i l a r connotat ion. These l inked sequences are the 
model's representat ion of p lans. The r e s t r i c t i o n to 
forward l inks may be regarded as a r e s u l t of the way 
events are perceived in the rea l world ( e . g . , i t i s v i r 
t u a l l y impossible to wh is t le a tune backwards). 

Means-ends Analys is . The lookahead mechanisms de
scr ibed above were presented mainly in the context of a 
forward-search analysis of a board p o s i t i o n . Not a l l 
move select ions are a r r i ved at in t h i s way. One or 
more of the dimensions under the st rategy node may sug
gest a goal s ta te ra ther than an actual move ( e . g . , 
" t r y to capture a p iece " ) . Since the d e f i n i t i o n of 
moves such as "capture" includes the not ion of a t rans
i t i o n from a peginning-state to an end-state, the model 
regards the beginning-state in such d e f i n i t i o n s as a 
precondi t ion which must be at ta ined before the r e 
commendation may be car r ied out . For example, in the 
game of chess the p r i o r s tate fo r "x captures y" is 
"x bears on y . " I f the p r i o r s ta te ex is ts on the board, 
then the spec i f i c recommendation leads to the asser t ion 
of a new move candidate. If the s ta te does not e x i s t , 
then that s ta te is t rea ted as a new subgoal, and i t s 
precondit ions are searched f o r in a s im i l a r manner. 
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The actual search is constrained in the same way as 
forward search, and therefore we re fe r to it as " r e 
gressive deepening" search. 

Since the concept of " forward" l i n k i ng refers to 
the order in which the imaginary proposi t ions are as
ser ted , an actual sequence of moves leading to a goal 
s tate a r r i ved at through means-ends analysis w i l l be 
stored in reverse order ( i . e . , s t a r t i n g move l a s t ) . 
The correct sequence may be rederived at each stage. 
This reder i va t ion may occur a move at a time during 
the course of the game, or may occur in lookahead by 
i n i t i a t i n g a forward search from the i n i t i a l move af
t e r it has been discovered by means-ends analys is . In 
p rac t ice we expect the model to be able to begin a 
forward search, and then i n i t i a t e a means-ends analysis 
from some hypothet ica l pos i t i on which is embedded with
in the forward s.earch. 

Finding a Reason fo r the Opponent's Move 

The opponent's l a tes t move is examined to see 
whether i t is par t of a current plan sequence. I f so, 
then it is classif ied as an "expected" move. We then 
assign to that move a "reason" taken f rom the reason 
fo r which the model generated t h i s expected move dur
ing i t s ear l ieT planning sequence. This reason may 
not be why the opponent ac tua l ly made that move. This 
egocentric oversight may cause the model to miss some 
important con f igura t ions , but we be l ieve that humans 
su f fe r from exact ly t h i s f a i l i n g . 

If the opponent's move is unexpected, the model 
checks to see whether the change between the previous 
board and the current board has been favorable fo r the 
opponent. If e i t he r a mater ia l change or a pat tern 
i d e n t i f i e d by t h i s check has a value which surpasses 
the s a t i s f i c i n g c r i t e r i o n , then the model assumes it 
has found the proper reason fo r the opponent's move. 
As before, t h i s may be wrong if there were mul t ip le 
outcomes of the move. If no sa t i s fac to ry reason has 
yet been found, the model t r i e s to see what the op
ponent can do on h is fo l low ing move, by looking at the 
current board and pretending to be i t s own opponent. 
The most favorable outcome f o r the opponent a f t e r a 
"lookahead" evaluat ion is regarded as being the reason 
for the questionable move. 

Note that whi le a l l of these processes lead to a 
seemingly shor ts ighted and subject ive determination of 
the reason, the model may become more sophist icated by 
not stopping these procedures upon the discovery of 
some s ing le high-valued reason, but rather doing a l l of 
them, thus f i nd ing mu l t i p l e reasons. 

Learning to Play a Better Game 

Playing a game may be viewed as an attempt to modi
fy a current s ta te i n to some goal s tate by means of 
some operator (or a p lan) . Improving one's s k i l l in 
p laying a game involves the emergence of the a b i l i t y to 
i d e n t i f y states fo r which operators e x i s t , and to f i nd 
operators which are appl icable to already known s ta tes . 
States and operations which transform states can be ac
quired by means of both experience and ins t ruc t ions 
from an external source (books, a t u t o r , e t c . ) . 

The Lookback Mechanism 

The main mechanism fo r learning through experience 
proposed here is tha t of " lookback." Whenever the model 
encounters a s i t u a t i o n which looks d e f i n i t e l y be t te r 
(or worse) than the s i t u a t i o n ex i s t i ng before, i t re 
constructs the former s i t u a t i o n and t r i e s to i d e n t i f y 
what operations were performed which transformed i t i n 
to the present s t a t e . The model may not ice a change in 
states but be unable to reproduce the way in which the 
change has occurred, espec ia l ly when it has taken many 
moves to produce a change. As wi th lookahead, the deptn 

of lookback is l im i ted by working memory and aided by 
the a b i l i t y to encode whole segments of moves in to one 
meaningful chunk. 

Since winning and los ing cons t i tu te d e f i n i t e chang
es in s ta tes , at these points the model looks back and 
t r i e s to i d e n t i f y what has made the s i t ua t i on j us t pre
ceding the completion of the game so powerfu l . This 
s i t ua t i on now becomes a subgoal s ta te . The model also 
attempts to character ize the las t move along the dimen
sions employed during move evaluat ion. This character
i za t i on serves as a plan fo r transforming the newly 
found subgoal i n to a win. Moves that would prevent the 
win from occurr ing can also be considered. Winning (or 
losing) is not the only case where a d e f i n i t e change in 
states occurs, but it is the most s t r i k i n g one. When
ever the model not ices that an already known state has 
been achieved, the same evaluat ion process may take 
place. The resu l t of a successful lookback is the cre
at ion of a new node representing the newly i d e n t i f i e d 
subgoal. In addi t ion to a descr ip t ion of the subgoal, 
th i s node includes a po in ter to the goal , and to the 
sequence of moves leading from the subgoal to the goal . 

Whenever an ex is t ing operation is about to be exe
cuted, the player has d e f i n i t e expectations about the 
outcome. If that outcome f a i l s to mate r ia l i ze , then 
the operation can be Te-evaluated and modi f ied, or even 
discarded. 

Lookback can occur whenever one encounters a f am i l 
i a r pa t te rn . This is t rue regardless of whether that 
f am i l i a r pat tern is ac tua l ly there on the board ( i . e . , 
consists o f rea l p ieces) , or whether i t p a r t i a l l y or 
wholly consists of imaginary pieces ( i . e . , pieces "add
ed" to the board by the lookahead process). The work
ing memory constra ints ac t ing upon lookahead w i l l make 
the detect ion of an imaginary f am i l i a r pa t te rn somewhat 
less l i k e l y than the detect ion of a rea l f a m i l i a r pat
t e r n , but once such a pat te rn is detected the learning 
process may proceed in the regular way. 

The I d e n t i f i c a t i o n of Patterns and Operations 

So fa r the discussion has i m p l i c i t l y assumed that 
plavers engaged in lookback know what they are looking 
f o r , and that the i d e n t i f i c a t i o n of new patterns and 
plans occurs a f t e r the f i r s t occurrence of an opportuni
ty to learn which the player is aware o f . That assump
t i o n is f a r from being t r ue . Progress in game p lay ing 
s k i l l is very slow and of ten f r u s t r a t i n g . Working mem-
ory constra ints arc one reason for the slow progress. 
Often players jus t cannot r e c a l l the i n i t i a l s tate or 
the sequence of moves which led to the f i n a l s ta te . 

An even more important obstacle to fas t progress 
(and one which may also great ly increase working memory 
load) is the p layer 's i n a b i l i t y to d is t ingu ish between 
relevant and i r r e l evan t in format ion which ex is ts on the 
board. The i n i t i a l s tate (which eventual ly becomes a 
f a m i l i a r pat tern and a possible final s tate) is not on 
the board by i t s e l f . The board often contains many i r 
relevant pieces. Even the relevant pieces may have 
proper t ies which are i r r e l evan t fo r the i d e n t i f i c a t i o n 
of a p a r t i c u l a r subgoal. 

This s i t ua t i on is analogous to the one ex i s t i ng in 
psychological experiments on concept learn ing , and our 
model goes about learning patterns in a way s im i l a r to 
that in which human subjects learn concepts. Studies 
of concept lea rn ing 1 4 ind ica te that people usual ly gen
erate a hypothesis about the concept they have to learn 
on the basis of avai lable instances. They regard t h i s 
hypothesis as the correct concept u n t i l they encounter 
a d isconf i rmat ion of the hypothesis, in which case they 
t r y another one. 

Whenever a subgoal is achieved, the lookback mechan
ism reconstructs the preceding s i t ua t i on (the " i n i t i a l 
s ta te" ) unless the subgoal has been the r e s u l t of the 
app l ica t ion of a plan ( i n which case no lookback and 
re-evaluat ion w i l l occur). Those features which have 
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changed serve as a c l u e as to wh ich f e a t u r e s may be 
r e l e v a n t t o t he d e s c r i p t i o n o f t h e i n i t i a l s t a t e . T h i s 
d e s c r i p t i o n i s t h e mode l ' s c u r r e n t concept f o r t h e 
s t a t e p r e c e d i n g t h a t s u b g o a l . When t h e same subgoa l 
occu rs a g a i n a new d e s c r i p t i o n o f i t s i n i t i a l s t a t e i s 
g e n e r a t e d . A g e n e r a l i z a t i o n r o u t i n e compares t h i s new 
d e s c r i p t i o n w i t h t he c u r r e n t concept f o r t h e i n i t i a l 
s t a t e w h i c h precedes t h i s s u b g o a l . The common f e a t u r e s 
found by t h i s compar ison fo rm a new g e n e r a l i z e d concept 
f o r t h a t i n i t i a l s t a t e . A s i m i l a r p rocess i s a p p l i e d 
t o t h e sequences o f moves wh ich have l e d t o t h e f i n a l 
g o a l . The s t a t e s and p l a n s i d e n t i f i e d a t t h e e a r l y 
s tages o f t he game are g r e a t l y m o d i f i e d over s h o r t 
p e r i o d s o f t i m e , b u t t h e y r a p i d l y s t a b i l i z e . 

T u t o r i n g 

The p r e c e d i n g s e c t i o n has d e s c r i b e d t h e way i n 
wh ich t h e model l e a r n s to p l a y a b e t t e r game on t h e 
b a s i s o f e x p e r i e n c e o n l y . People can become b e t t e r 
p l a y e r s by u s i n g e x t e r n a l sources o f knowledge . Zo-
b r i s t and C a r l s o n 2 4 emphasize t h e impo r tance o f a d v i c e -
t a k i n g f o r a model o f game p l a y i n g . Our model has t h i s 
c a p a b i l i t y and can b e g i v e n a d v i c e i n a f a i r l y n a t u r a l 
way. For example , t h e p a t t e r n ''openfour,'1 wh ich i s 
c r u c i a l i n Gomoku, can be t a u g h t to t he model by e n t e r 
i n g t h e s t a t e m e n t : 

"OPENFOUR" LOOKS LIKE A SEQUENCE OF A 

BLANK SQUARE, A ROW OF FOUR PIECES, AND 

A BLANK SQUARE. 

"LOOKS L IKE" is a p r e d i c a t e wh ich adds a p o i n t e r f r om 
t h e name o f t h e p a t t e r n t o i t s d e f i n i t i o n . "SEQUENCE" 
builds a structure with i t s members ordered along one 
a x i s , and i s a l s o a p r o c e d u r e f o r i d e n t i f y i n g t h e 
e x i s t e n c e o f a s i m i l a r s t r u c t u r e on t h e b o a r d . "ROW" 
i s s i m i l a r t o "SEQUENCE," excep t t h a t i t a l l o w s p e r 
m u t a t i o n s o f i t s members a l o n g a g i v e n a x i s . 

The " m e a n i n g " of OPENFOUR f o r t h e game of Gomoku 
may be added by s a y i n g : 

"OPENFOUR" SUGGESTS FOR GOMOKU THAT YOU 

PLACE A PIECE ON ANY UNOCCUPIED MEMBER 

OF THE "OPENFOUR." 

We a re c u r r e n t l y imp lemen t i ng p rocedu res f o r g i v i n g 
a d v i c e i n v o l v i n g f u n c t i o n a l d e f i n i t i o n s and l ookahead . 
For example , we wou ld l i k e to be a b l e to d e f i n e a PIN 
i n chess as f o l l o w s : 

X PINS Y TO Z 

ISWHEN: X SEARS ON Y. 

IF Y MOVES, X, WHICH DOES NOT BEAR ON Z, 

WILL BEAR ON Z, 

THE VALUE OF X CAPTURING Z FOR X'S OWNER 

IS GREATER THAN THE VALUE OF ANY MOVE 

OF Y FOR Y 'S OWNER. 

The o p e r a t o r "VALUE" t akes i n t o accoun t t h e v a l u e o f an 
exchange p l u s t h e v a l u e o f p a t t e r n s r e s u l t i n g f rom a 
g i v e n move ( i t may have t o c a l l l ookahead t o d o t h i s ) . 
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The empty ovals represent tokens of the "act" to 
which they point. Empty brackets represent argument 
slots which are f i l l e d in with information either 
exp l ic i t ly mentioned or derived from the rules of spe
c i f i c games. The English equivalent of this network is 
as follows (note that statements in brackets are c la r i 
f ications rather than part of the description i t s e l f ) : 

"Games are played by players. The goal 
of playing is for one of the players to 
achieve some winning state. Games have some 
setup [e.g. board, pieces]. Games have legal 
moves which are made by players. A legal move 
specifies some object [e.g. 'knight, ' 'bishop'] , 
i t s starting location [ i . e . current location], 
and i t s f inal location. [The f inal location 
can be defined in terms of i t s spatial relation 
to the starting location, and can include any 

special conditions concerning the path be
tween the two locations (e.g. , 'along an un-
blocked diagonal to either an unoccupied 
square or a Square occupied by an opponent's 
piece') , ] Games have moves which must be 
legal moves. Moves have a goal and a 
result. 

The "must-be" relation between MOVE and LEGAL-MOVE has 
the following implications: For each node W such that 

W-^MOVE and W relat ion( i) | > x > 

there exists a node Y such that 

Y -J^ i LEGAL-MOVE a n d y r e l a t i o n ^ 

and X is within the range defined by 2, 
The result of each move is a new configuration on 

the board, plus whatever changes occur in the player's 
conceptions of the game which are the result of a re-
evaluation of the board. The goal of each move is de
rived from the strategies for generating good moves. 
If present, such goals are regarded as being the rea
sons for which particular moves are made. 
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