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Abstract

This paper discusses human semantic know-
ledge and processing in terms of the SCHOLAR
system. In one major section we discuss the
imprecision, the incompleteness, the open-
endedness, and the uncertainty of people's
knowledge. In the other major section we
discuss strate?ies people use to make dif-
ferent types of deductive, negative, and
functional inferences, and the way uncer-
tainties combine in these inferences.
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1. Introduction

In this paper we will discuss how to repre-
sent and process information in a computer
in ways that are natural to people. This
does not mean doing away completely with
representations and procedures which com-
puters have traditionally used, but adding
new representations and procedures which
they have not used.

People often store and communicate imprecise,
incomplete, and unquantified information;
they often assert truth or falsity in rela-
tive terms; and they seldom seem to use
rigorous logic in their inferential
Because of these conditions,
have an almost infinite information proces-
sing capacity, with inference making and
problem solving abilities more refined and
far more flexible than any existing com-
puter program.

people seem to

How can we study these human capabilities in
order to make our machines show similar per-
formance? A combination of approaches is
perhaps best. Observation of people's be-
havior, introspection, some experimentation,
protocol analysis, and synthesis of computer
programs can all be valuable techniques. A
recent paper (Collins,Carbonell and Warnocke)
discusses a technique for combining protocol
analysis with program synthesis as applied
to tutorial dialogues. The synthesis directs
what to analyze, and the strategies observed
in the analysis are evaluated by synthesis,
in a kind of feedback loop. We have been
using the SCHOLAR system in this way as a
vehicle for experimentation with natural
semantics.

Before we discuss some of the major problems
in natural semantics, we will briefly des-
cribe the SCHOLAR system, since it is the
environment for our research. A word of
caution though: we are only trying to de-
velop some insights, without attempting to
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be exhaustive. More questions will be raised
than answers provided. There are many ob-
servable things people do that we do not
know how to simulate.

2. The Scholar System as an Environment
to Study Natural

Semantics

In this section we will discuss, very
briefly, some pertinent aspects of SCHOLAR
a mixed-initiative instructional system.
More detailed discussions are provided in
Carbonell?'®*'* and Warnock, Carbonell, and
Carbonell'. Two data bases are currently
being developed: one is about the geography
of South America, and the other is about the
ARPA network. SCHOLARS knowledge about any
subject matter is in the form of a static
semantic network of facts, concepts, and
procedures. This is a modified and extended
network a la Quillian'? and has a rich in-
ternal structure with a well-defined syntax.

Dialogue with SCHOLAR takes place in a subset
of English that is limited mainly by SCHOL-
AR'S currently primitive syntactic capabili-
ties. In tutorial fashion, the system uses
its semantic network to generate the material
it presents, the questions it asks, and the
corrections it makes. At any time SCHOLAR
accepts questions and requests from the
student, and generates responses based on

its semantic network, making calculations
and inferences of different types that it
has been programmed to handle. The dialogue
is unanticipated, and is dependent on the
student's responses, questions,and requests.
Figure 1 presents a sample protocol of an
interaction with SCHOLAR; the person types
after the asterisk and returns control to
the system with a second asterisk.

Figure 1
A Sample Dialogue Between
SCHOLAR and a Student

{Student inputs are enclosed by asterisks)
WHAT IS THE LANGUAGE OF ARGENTINA?
#PROBABLY SPANISH*

VERY GOOD.
APPROX WHAT IS THE AREA OF ARGENTINA?
*TELL ME SOMETHING ABOUT PERU*

PERU IS A COUNTRY.

IT IS LOCATED IN SOUTH AMERICA.
THE CAPITAL OF PERU IS LIMA.

NOW ANSWER THE QUESTION YOU DIDN'T ANSWER
BEFORE.



*THE AREA OF ARCENTIMA IS 1,100,000 SQUARE
MILES*

APPROXIMATELY TRUE, BUT A MORE EXACT VALUE
Is 1,200,000,

THE EASTERN RBORDERING COUNTRY OF PERU
I8 —-—-.

*CATHOLICISM*

WRONG, CATHOLICISM IS5 NOT A COUNTRY BUT A
RELIGION. THE CORRECT ANSWER IS: BRAZIL

WHERE IS PERU?
*I§ ASUNCION HOT?Z*
SINCE ASUNCION IS PART OF PARMGUAY, YES,

*WHAT IS THE MOST IMPORTANT DIFFERENCE
BETWEEN PERU AND PARAGUAY?*®

THE PRIMARY DIFFERENCE I5: THE POPULATION
OF PERU IS LARGER BY A FACTCR OF 7.8.

Figure 2 shows some excerpts of SCHOLAR's
semantic network. Proparties, none of which
ara cbligatory, can have aa valuea a set of
LISP atoms {usudlly English words defined
elsevhere in the netwoxk), different types
of lists, and other properties. Attributes
ara usually English words, but there is a
sat of special attributes for important re-
lations, like SUPERC (for superconcept or
superordinate, e.g., Lima is a city and a
capitall}, SUPERP {for supearpart, e.g., Lima
is a part of Peru and South america),

SUPERA {for superattribute, e.g., fertile
refers to soil and soil refers to topegraphy),
APPLIED/TO (color applies to things, and
capital to countries and mtates), came-
atructure attributﬁs like agent and instru=
ment {see Fillmore“), and various others,

Figure 2
Four Partial Entries from
SCHOLAR'eE Data Base

[RPAQQ CAPITAL (({CN CAPITAL))}
NIL
{SUPERC NIL CITY
(PLACE NIIL (OF NIL GOVERNMENT)))
{APPLIED/TC (I 4) COUNTRY STATE)
(EXAMPLES (I 2) ({$EOR BUENGS/AIRES
LIMA MONTEVIDEQ BRASILIA
GEORGETOWN CARACAS BOGOTA
QUITO SANTIAGO ASUNCION LA/PAZ
WASHINGTON )
{RPAQO FERTILE ({(ADJ FERTILE}
{CONTRA (BARREN)))
NIL
{SUPERA NIL SOIL))}
{RPAQQ PERU (( (XN PERU))
NIL
(SUPERC NIL COUNTRY)
{SUPERP (X 6)
SOUTH/AMERICA)

(LOCATION NIL
{IN NIL (SOUTH/AMERICA NIL
WESTERN) )

(ON NIL (COAST NIL (OF NIL
PACIFIC))

{LATITUDE (T 4)

{RENGE NIL -18 0)})

(LONGITUDE (I &)

(RANGE NIL -82 -£8))

(BORDERING /COUNTRIES (I 1)
{NORTHERN (I 1)

(8L COLUMBIA ECUADOR))
(EASTERN {TI 1)

BRAZIL)
{SOUTHEASTERN (I 1}

BOLIVIA)
(SOUTHERN (I 2)

CHILE))

{PORPULATION (I 2}

(APPROX NIL 11 000000)

(LANGUAGE (1 2)
{ {$L. PRINCIPAL OFFICIAL)
NIL SPANISH}
(INDIAN (T 2)
(5L QUECHUA AYMARA }}}
{(CAPITAL (I 1}
LIMA)
{CITIES (I 2}

{(PRINCIPAL NIL {SL LIMA
CALLAO ARAQUIPA TRUJILLO
CHICLAYC CU2C0))}

(RPAQD LIMA (({XN LIMA))
NIL
{SUPERC NIL CITY CAPITAL)
(SUPERP (I 6)
PERU SOUTH/AMERICA)
{LOCATION WIL {IN WIL PERU)}
(NEAR (I 1)
PACIFPIC )

The entry for lecation under Peru in

Fiqure 2 illustrates an important aspact

of SCHOLAR's semantic network called sm-
bedding. Under the attribute location

there is the value South America plus several
subattributes among which is bordering coun-
tries. BPBut under bordering countries thare
are subattributes like northern and eastern,
some of which have several values. Embedding
describes tha abllity to go down aa deep as
necessary to describe a property in more or
less detail.

In the data base thers are alsc tags, auch as
the N1l aftar location and the (I 1) after
bordering ¢ountriea. These tags are called
iryelevancy or importance tags, and they
vary from (NiI) &0 €. The lower the tag,
the more important the plece of information
ig (except that I 6& is used to suppress
printing, as with SUPERP). The tags add up
as you go down through lower embedded levels.
One of the ways SCHOLAR uses I-tags ls to
dacide what is relevant to say at any given
time,

In the rest of this paper, we will discuss
how we are using SCHOLAR to copa with some
of the problems in natural semantics.
However, there are still many natural-
memantics problems we have not touched.



3. Natural Semantic Information

In this section we discuss some aspects of

natural semantic information and its rela-
tion to artificial intelligence.

3.1 Imprecision or Fuzziness

Imprecise language is an essential charac-

teristic of human communication. As
Lyons'™ says, "Far from being a defect

as some philosophers have suggested, refer-
ential 'impreciseness'... makes language a
more efficient means of communication.”
Talking about a tall person or a blue-green
object does not require precise specifica-
tion of height or spectral characteristics.
The imprecision may occur either in commu-
nication or storage. If we say that a
colleague receives a large salary, we may
or may not know the figure.

SCHOLAR currently stores areas and popula-
tions in numerical form, but it can respond
to the fuzzy question "lIs Montevideo large?"
with a pertinent answer like: "It is not
one of the largest cities in South America,
but it is the largest city in Uruguay".
Here SCHOLAR has found two superparts,

South America and Uruguay, and then com-
pared Montevideo to other cities in each
with respect to population.

However, it is more common for people to

store valueg that are imprecise or 'fuzzy',
what Zadeh™ calls 'linguistic' variables.
This is the case with values like 'large’',
'red', 'hot', 'rich', etc. It seems to us

that one must be able to store either
precise values or fuzzy values interchange-
ably. (In fact, SCHOLAR has fuzzy values
as well as precise values stored, e.g.,
that the Brazilian Highlands has a large
population.) Furthermore, the procedures
that act upon these values must be flexible
enough to deal with either.

3.2 Incompleteness, Embedding, and

Relevancy

Imprecise statements are often motivated
by incomplete specification. Since all
specifications can be refined, they are
essentially incomplete. We store what is
necessary, and even if we store more, we
only communicate what is pertinent.
SCHOLAR does this through its I-tags. If
it is asked "Tell me about Peru", it only
gives a few salient facts.

Further specification can be added by re-
fining existing values. For example,
instead of 'blue', we can have 'Navy blue’,
or 'quite dark Navy blue', etc. Further
specification can also be added by giving
new properties with attributes somewhat
orthogonal to previous ones. An example
of this is 'tall man' versus 'tall, heavy
man wearing glasses'. Properties can be

specified to any level of detail by embedding,
an inherent quality of SCHOLAR-type semantic
networks.
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3,3 The Reference Problem and Context

Somewhat related to
relevancy is the reference problem

incompleteness and
(see

Olson''), Referring to a colleague, we
may 'define' him as the father of Jack and
Jill, or the author of that paper on self-

referential statements, or the tall thin
fellow with glasses. We decide on some
specification depending on the context,
including our assumptions about the person
we are talking to. People usually specify
only to the degree that is needed. In this
sense, every partial specification is a
definition’.

The problem of context pervades natural se-
mantics. Definitions and specifications,
anaphoric references, what and how to answer,
all depend on context. Furthermore, there
usually co-exist a range of contexts from
overall context to short-term running con-
texts. For example, at a given time,
SCHOLAR may have the contexts South America,
Argentina and Buenos Aires, each with some
dynamically adjustable life. What is rele-
vant at any given time depends on this con-
textual hierarchy,

A start toward making references specific to
the listener is possible in a SCHOLAR type
system by using I-tags (see Collins, Car-
bonell and Warnock”). The likelihood that
another person will know about any concept

is roughly proportional to the importance of
the concept, as measured by the I|-tags, with
respect to the overall context. Therefore,

it is possible to estimate the sophistication
of a person based on the level of tags of the
concepts he mentions in his conversation.
This estimate than can influence the des-
cription one uses in referring to some con-
cept. For example, to an unsophisticated
listener one might refer to the "capital

of Argentina" rather than "Buenos Aires",
because the I-tags for the concepts "capital"”
and "Argentina" are lower than those for
"Buenos Aires", as measured from a context
such as geography.

In the future we want to have adjustable con-
texts in SCHOLAR, so that it can talk about
the ARPA network, say, "from a communications
point of view" to one person and "from a pro-
gramming point of view" to another person.
What this entails is a temporary alteration
of the relative values of 1-tags throughout
the semantic network. Those concepts that
are referred to under the concept "communi-
cation" (such as message capacity, bit-rate,
etc.) should be temporarily increased in im-
portance wherever they occur in the data
base, for the person interested in communi-
cation. A corresponding change must be made
for the person interested in programming or
any other concept or set of concepts. This
kind of sensitivity to the interests and
background of the person, and the kind of
sensitivity (described above) to the sophis-
tication of the person may be the two major
elements in the way people adapt what they
say to the listener.



3.4 Closed verauB Open Worlds

In some realms of discourse such1 s an air-
line reservatlons system (Woods ), a blocks
world (Winograd'®),” or a lunar rocks cata-
logue (Woods, Kaplan, and Nash-Webber***},
there is a closed set of objects, attributes,
and values to deal with. However, in most
real world domams such as those faced by
SIR (Raphael’®), TLC (Quillian 2y, or
SCHOLAR (Carbonell?), there are open sets

of objects, attributes, and values. It
turns out that the procedures and even the
rules of inference that can be applied are
different in closed and open worlds.

The distinction between closed and open sets
is one of exhaustiveness and not one of
size. For example, the set of states (e.g.,
lowa), which is a closed set for most
people, is probably larger than the set of
cattle breeds (e.g., Holstein), which is an
open set. However, open sets tend to be
larger in general than closed sets.

The distinction is important in a variety of
ways. For example, if there are no basaltic
rocks stored in a closed data base, then it
makes sense to say "No" to the question
"Were any basaltic rocks brought back?"

But if no volcanoes are stored for the

U.S., it does not follow that the answer

should be "No" to the question "Are there
any volcanoes in the U.S.?" A more appro-
priate answer is "l don't know". Further-

more, it makes sense to ask what the smallest
block in a scene is or the rock with least
aluminum concentration, but it makes no
sense to ask what is the smallest city in
Brazil or the least famous lawyer in the
U.S. It would be an approriate strategy
for deciding how many flights from Boston
to Chicago are nonstop, to consider each
flight and count how many make 0 stops.

But it would not be an appropriate strategy
to consider each person stored in a limited
data base (such as humans have),in order

to answer the question "How many people in
the U.S. are over 30 years old?" Within
open worlds there are closed sets, so that
a question like "How many states are on the
Pacific?" makes sense whereas "How many
cities are on the Pacific?" does not.
SCHOLAR deals with this by distinguishing
exhaustive sets from non-exhaustive sets.

We will discuss in Section 4 how SCHOLAR
begins to deal with open world semantics.
The essential point here is that the well-
defined procedures that are appropriate for
a closed world simply do not carry over to
an open world. Unfortunately, most of human
knowledge is open-ended, and so people have
complex strategies for dealing with uncer-
tainty and facing problems such as how to
apply new attributes or values to objects
where they haven't applied in the past.

3.5 The True-False Dichotomy
and Quantification

The two-valued logic that underlies the
propositional calculus and related approaches
to inference cannot encompass natural seman-
tics. The trouble arises because truth
varies in degree, in time, in range, in cer-
tainty, and in point of view of the observer,
when it is applied to real-world objects.
We will briefly examine some of the implica-
tions of the multivalued nature of truth

for natural semantics.

Symbolic logic uses quantification to distin-
guish between the universal and the particu-
lar, e.g., between "AIll men are mortal" and
"Some men have warts". But there is no
allowance made for the degrees of truth as
between say "Some men have warts" and "Some
men have ears", even though only a fraction
have warts and almost all have ears. People
will infer that Newton had ears (given no in-
formation to the contrary as with Van Gogh),
but will not infer that Newton had warts.
The inference in the former case treats the
particular like the universal, because almost
all men have ears. The more generally true
a statement is, the more certainty people
assign to such an inference. There just are
not many universal truths to be found out in
the cold, cruel world, and so people make

the best of it.

Degree of truth varies not only with respect
to fu2zy variables (see Section 3.1) and
quantification, but also in other respects.
The sky is blue, but not all the time. The
yellow of a lemon is less variable than the
yellow of corn, which sometimes borders on
white. Boston is cold in the winter, but it
is not so cold from the point of view of

an Eskimo. Nixon told us that he didn't
know about the cover-up of Watergate, but
one is only more or less certain that he
didn't know. What these examples are
designed to show is that people are uncer-
tain about the truth of any proposition for
a variety of reasons. Sometimes people seem
to merge all the many sources of uncertainty
together, but sometimes they can distinguish
different aspects of their uncertainty with
respect to a single proposition.

SCHOLAR does not now have any means for repre-
senting uncertainty, but the natural way to
add such information is in tags stored along
with the I-tags. Just as with I-tags, U-tags
can apply at all embedded levels of the data
base. Because we have started on programming
uncertain inferences (discussed below), it
has become desirable to represent the under-
lying uncertainty in the data base as well,
in order to evaluate how certain any infer-
ence may be.



4. Natural Inferences

We classify human semantic inferences into
four major types: deductive, negative,
functional, and inductive inferences. The
various types are discussed in somewhat
greater detail in Collins and Quilljan’
and Collins, Carbonell, and Warnock®. We
do not argue that these describe all the
inferential strategies that people use, but
only some of the major varieties. Each of
the different strategies described is being
implemented as a specific subroutine in
SCHOLAR to work on either the geography
data base or the ARPA network data base.
While we think that people have a large

set of such strategies, the number is
probably less than one hundred. Therefore,
despite the inelegance of such an approach,
we do not regard it as an endless task to
encompass the bag of inferential tricks a
person uses.

In Figure 3 we have included excerpts from
tape-recorded dialogues between human tutors
and students to illustrate some of the more
complicated strategies people use, and the
ways they combine together. We will dis-
cuss the examples individually below.

4.1 Deductive Inferences

There are several transitive relations that
people use frequently to infer that a prop-
erty of one thing may be a property of the
other. These include superordinate, super-
part, similarity, proximity, subordinate,
and subpart relations.

Of the above types SCHOLAR now handles only
superordinate and superpart inferences,
which are the most common. For example,

if asked "Does the Llanos have a rainy
season?", SCHOLAR will first look under
Llanos and failing to find the information
there, will look under Llanos' SUPERC {for
superordinate), which is savanna, and its
SUPERP (for superpart), which is Venezuela
and Colombia. A rainy season is a property
of savannas and so the superordinate infer-
ence provides the answer. The superpart
inference is less general because it is re-
stricted to certain attributes such as
climate, language, and topography. One
would not want to conclude that the capital
of Massachusetts is Washington D.C., just
because Massachusetts is part of the United
States. Because most properties of a super-
ordinate or superpart are only generally
true, and not universally true, exceptions
must be stored to preclude an incorrect
inference (Raphael’®).

Similarity and proximity inferences parallel
the superordinate and superpart inferences,
but they carry less certainty. An example
of a person using a proximity inference

is shown in the latter part of the tutor's
response in Example 1 of Figure 3. The tutor
first said that a savanna could not be used

for growing coffee, but then he backed off
this conclusion because of the proximity

of the large Brazilian savanna to the coffee-
growing region there. To illustrate a
similarity inference: if one knows a wallaby
is like a kangaroo, only smaller, then one
will infer that a wallaby probably has a
pouch. We plan to add similarity information
to SCHOLAR in the near future, because it
will also be useful in making functional
analogies which are discussed below. The
recently added map facility (Warnock, Car-
bonell,” and Carbonell’) which ties together
visual and semantic representations, makes
proximity inferences possible, but they are
still a way off.

Figure 3
Tutor-Student Dialogue Excerpts

(T) There is some jungle in here (points to
Venezuela) but this breaks into a
savanna around the Orinoco.

(S) Oh right, that is where they grow the
coffee up there?

(TY | don't think that the savanna is used
for growing coffee. The trouble is the
savanna has a rainy season and you can't
count on rain in general. But | don't
know. This area around Sao Paulo is
coffee region, and it is sort of getting
into the savanna region there.

(S) Are there any other areas where oil is
found other than Venezuela?

(T) Not particularly. There is some oil
offshore there but in general oil comes
from Venezuela. Venezuela is the only
one that's making any money in oil.

(S8) Is the Chaco the cattle country? |
know the cattle country is down there.

(T) | think it's more sheep country. It's
like western Texas so in some sense
| guess it's cattle country.

(T) And the northern part of Argentina has
a large sort of semi-arid plain that
extends into Paraguay. And that's a
plains area that is relatively un-
populated.

(S) why?
(T) Because it's pretty dry.



Subordinate and subpart inferences follow a
somewhat different pattern from the others
discussed. If asked whether South America
produces any oil, a person will answer "Yes"
because Venezuela, which is part of South
America, produces oil. But one does not
want to conclude that South America is hot
because the Amazon jungle is. We haven't
worked out the details of the restrictions
on these inferences as yet.

There are other transitive relations that are
used to make deductive inferences but they
are not as prevalent as the ones outlined
here.

4.2 Negative Inferences

Negative information, such as the fact that
men do not have wheels, is not usually
stored but rather inferred. In a closed
world this presents no problem; it is
reasonable to assume that if something
not stored, then it is not true.
SCHOLAR currently would say "No" if asked
"Is oil a product of Brazil?" just because
oil isn't stored for Brazil. But in the
real world, the fact that something
stored does not necessarily mean that
not true. People seem to have complex
strategies for deciding when to say "No"
and when to say "I don't know". We are
currently trying to develop these

is
In fact,

is not
it is

One kind of negative inference now in SCHO-
LAR is a simple contradiction procedure. It
relies on contradictory values stored with
various concepts: for example, barren con-
tradicts fertile, and demoncracy contradicts
dictatorship. Suppose SCHOLAR is asked "Is
the Pampas barren?" It would find the soil
of the Pampas is fertile, and since fertile
contradicts barren, it would say "No, The
soil of the Pampas is fertile."

There is an important class of contradic-
tions that are not subsumed under the proce-
dure above. For example, consider the
question "Is Buenos Aires a city in Brazil?"
The fact that Buenos Aires is not among the

cities of Brazil is no reason to say "No",
because there are cities in Brazil, such
as Corumba, which are not stored. But

there are three facts that together make a
contradiction possible: (1) Buenos Aires is
located in Argentina, (2) cities only have
one location, and (3) Argentina and Brazil
are mutually exclusive. We can illustrate
the necessity for conditions (2) and (3):
(2) even though Portuguese is the languaqe
of Portugal, it is also the language of

Brazil (i.e., language can have more than
one location); (3) even though Sao Paulo
is in South America, it is also in Brazil
(i.e., South America and Brazil are not

mutually exclusive). Making an incorrect
negative inference about cities with more
than one location (e.g., Kansas City) or

different cities with the same name
New York and Rome, Italy)

(Rome,
is precluded by

in SCHOLAR.
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storing both locations specifically, just as
with deductive inferences. The strategy we
have worked out in flow chart form to find

different contradictions of this kind is
fairly complex.
Failure to find a contradiction leads to

another kind of negative inference people
use which we call the lack-of-knowledge in-
ference (Collins, Carbonell and Warnock®).
Example 2 of Figure 3 shows the tutor using
this strategy. The basis of the tutor's in-
ference is this: since he knows as much
about other South American countries as he
knows about Venezuela, it is a plausible but
uncertain inference that if other countries
produced oil, he would know about it. (His
conclusion was at least somewhat wrong,
because there are in fact several other
countries in South America that produce oil,
though for those countries oil is not nearly
so important as it is for Venezuela.)

Such a strategy is currently being implemented
in SCHOLAR in the following way: If asked a
question like "Is oil a product of Uruguay?"
where no oil is stored, SCHOLAR can look for
oil under similar objects (e.q., Venezuela

or Brazil) or objects with the same SUPERC
and SUPERP. If SCHOLAR finds oil stored with
Venezuela (say with an I-tag of 3) and if it
has enough information stored about Uruguay
(up to an I-tag of 8, say) to know about oil
if it were at all important, then it can
infer that Uruguay probably has no oil. The
degree of certainty expressed in the answer
should depend on the difference in I-tags
between the depth of what it knows about
Uruguay and the level at which oil is stored
with similar objects. If SCHOLAR can find

no similar objects that have the property in

question, as with "lIs sand a product of
Uruguay?" the appropriate answer is something
like "I don't know whether sand is a product

of any country in South America". The lack-
of-knowledge inference is based on the
assumption that the extent of one's knowledge

is fairly uniform for similar objects.

4.3 Functional Inferences

Functional inferences are common in the
dialogues we _collected (Collins, Carbonell
and Warnock’). Examples 1, 3, and 4 in
Figure 3 illustrate the three different
ways we have seen people use functional
knowledge: in quasi-calculations, in analo-
gies, and in answer to "why" questions.

Functional knowledge, which includes knowledge
about functional determinants and their inter-
actions, is learned, just as is factual know-
ledge, and therefore is stored in SCHOLARS
data base under concepts such as climate or
agricultural products. We would argue that
the representation of functional knowledge
should be in a form that different procedures
can use. One problem is to find a way to
represent such knowledge in SCHOLAR so that



it can be more or leas precise, and still be
accessible to different subroutines that
infer answers to questions or that describe
the functional relation to students.

Functional calculations can be used in both
a positive and negative way. One simple
positive function now in SCHOLAR calculates
the climate of a place if the information is
not stored. Based on the functional deter-
minants of climate, which are altitude, lati-
tude, and distance from the sea, SCHOLAR
will infer whether the climate is tropical,
sub-tropical, temperate, or cold/polar. A
negative use of calculation based on the
agricultural products function is shown

in the first part of the tutor's answer in
Example 1. The functional determinants of
agricultural products include the climate,
soil, and rainfall. The tutor picked the
lack of rain as a basis for a tentative

"No". Negative calculations do not require
as precise knowledge as positive calculations.
They usually only require that one of the
functional determinants have an inappropriate
value.

Like functional calculations, functional
analogies can be positive or negative.
Example 3 shows the tutor making a positive
functional analogy, again with the agricul-
tural products function. There he thought
of a region, western Texas, that matched
the Chaco in terms of climate and rainfall,
the functional determinants of cattle rais-
ing. Since he knew that western Texas was
cattle country he inferred that the Chaco
might be as well. A negative functional
analogy might have occurred if the student
had asked whether the Chaco produced
rubber. Since the Amazon jungle and Indo-
nesia produce rubber, the tutor could have
said "No" on the basis of the mismatch
between the Chaco and those regions, with
respect to climate and rainfall.

A positive and negative analogy subroutine
for SCHOLAR has recently been completed.

It is a fallback strategy to be used if
there is not enough information stored to
calculate the functional relationship.

For a functional analogy it is only neces-
sary to know the functionally relevant
attributes and their relative importance.
Then SCHOLAR looks to see if it knows any
similar objects where the property in
question is in fact stored. It tries to
find a match or a mismatch by comparing the
given object and the similar object with
respect to their values on the functionally
relevant attributes. People frequently
use such analogical reasoning, probably
because of the ill-defined nature of their
knowledge about functional relations.

The last example in Figure 3 shows the use of
a functional relation to answer a "Why" ques-
tion. The population density of a place
depends on an indefinite set of functional
determinants: climate, soil, and rainfall

are major ones but distance from the sea,

the particular continent, presence of
valuable minerals, all contribute in dif-
ferent ways. The tutor picked one determi-
nant that had a value inappropriate for a
large population density and gave that as

a reason. By contrast a geographer could
probably write a whole treatise on why the
Chaco has a low population density. What

we aspire for SCHOLAR to do is what the tutor
did, that is, to pick one or two of the major
determinants with appropriate values and give
those as a reason.

4.4 Inductive Inferences

We mention inductive inferences here only
because they are a major class of human
inference. We have not yet tried to pro-
gram them in SCHOLAR since they occur
mostly in storing rather than retrieving
information. The generalization and dis-
crimination processes underlying induction
have been discussed in detail elsewhere
(Becker'; Winston'®; Collins and Quillian’).

4-5 Combining Inferences and Accumulating;
Uncertainty

The inferential processes described can com-
bine in a variety of ways. For instance,
contradictions can combine with deductive
inferences. SCHOLAR will answer a question
like "lIs the Atlantic orange?" with "No, it
is blue", because it finds blue is stored
with the SUPERC, ocean. Also one functional
inference may call another. If the agricul-
tural products function needs a value for
the climate of some region, it could call
the climate function to compute it.

A more important way that inferences combine
shows up when different strategies reach
independent conclusions about the same
question. A good example is Example 1 in
Figure 3. There a negative functional
inference, with an implicit lack-of-knowledge
inference, first led to a tentative "No"
answer, but then a proximity inference pro-
duced a possible "Yes" answer, and so the
tutor backed off his earlier "No". When
several inferences combine to yield the same
conclusion, they increase the certainty of
the answer, and when they produce opposite
conclusions, they decrease the certainty.

There are a number of sources of uncertainty
in inferential procedures. Uncertainty can
derive from the size of the difference
between I-tags in the lack-of-knowladge in-
ference, it can derive from the degree of
match or mismatch in a functional analogy,
it can derive from the degree of predictive-
ness of the functional determinants, and as
we discussed earlier, it can derive from the
degree of certainty about the information
stored. These sources of uncertainty may
be combined to produce an overall uncertainty
(see for example Kling®). This overall
uncertainty is important so that long.



tenuous chains of reasoning are not pursued 6. A.M. Collins, J.R. Carbonell, and E.H.

to their pointless end, and so that the Warnock, "Analysis and Synthesis of

degree of uncertainty in the answer can be Tutorial Dialogues", Bolt Beranek and

indicated to the student. Newman Inc., Technical Report No. A.l.l
(March 1973) .

5. Conclusions 7. AM. Collins and M.R. Ouillian, "How to

Make a Language User", in E. Tulving and

What we have tried to show in this paper is W. Donaldson (eds.) Organization of Memory,

the fuzzy, ill-defined, uncertain nature of Academic Press, New York (1972).

much of human knowledge and thinking. We

want SCHOAR to be just as fuzzy-thinking 8. C. Fillmore, "The Case for Case" in Bach

as we are. and Harms (eds.), Universale in Linguistic
Theory. Holt, Rinehart, and Winston N.Y.
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