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Abstract 
In most real-world settings, due to limited time or 
other resources, an agent cannot perform all poten­
tially useful deliberation and information gathering 
actions. This leads to the metareasoning problem 
of selecting such actions. Decision-theoretic meth­
ods for metareasoning have been studied in A I , but 
there are few theoretical results on the complexity 
of metareasoning. We derive hardness results for 
three settings which most real metareasoning sys­
tems would have to encompass as special cases. 
In the first, the agent has to decide how to allo­
cate its deliberation time across anytime algorithms 
running on different problem instances. We show 
this to be ATP-complete. In the second, the agent 
has to (dynamically) allocate its deliberation or in­
formation gathering resources across multiple ac­
tions that it has to choose among. We show this 
to be AfP-hard even when evaluating each individ­
ual action is extremely simple. In the third, the 
agent has to (dynamically) choose a limited num­
ber of deliberation or information gathering actions 
to disambiguate the state of the world. We show 
that this is AfP-hard under a natural restriction, and 

hard in general. 

1 Introduction 
In most real-world settings, due to limited time, an agent can­
not perform all potentially useful deliberation actions. As 
a result it will generally be unable to act rationally in the 
world. This phenomenon, known as bounded rationality, has 
been a long-standing research topic (e.g., [3,17]). Most of 
that research has been descriptive: the goal has been to char­
acterize how agents—in particular, humans—deal with this 
constraint. Another strand of bounded rationality research 
has the normative (prescriptive) goal of characterizing how 
agents should deal with this constraint. This is particularly 
important when building artificial agents. 

Characterizing how an agent should deal with bounded ra­
tionality entails determining how the agent should deliberate. 

*The material in this paper is based upon work supported by the 
National Science Foundation under CAREER Award IRI-9703122, 
Grant IIS-9800994, ITR IIS-0081246, and ITR nS-0121678. 

Because limited time (or other resources) prevent the agent 
from performing all potentially useful deliberation (or infor­
mation gathering) actions, it has to select among such actions. 
Reasoning about which deliberation actions to take is called 
metareasoning. Decision theory [7,10] provides a norma­
tive basis for metareasoning under uncertainty, and decision-
theoretic deliberation control has been widely studied in AI 
(e.g., [2,4-6,8,9,12-15,18-20]). 

However, the approach of using metareasoning to control 
reasoning is impractical if the metareasoning problem itself 
is prohibitively complex. While this issue is widely acknowl­
edged (e.g., [8,12-14]), there are few theoretical results on 
the complexity of metareasoning. 

We derive hardness results for three central metareason­
ing problems. In the first (Section 2), the agent has to de­
cide how to allocate its deliberation time across anytime al­
gorithms running on different problem instances. We show 
this to be NP-complcte. In the second metareasoning prob­
lem (Section 3), the agent has to (dynamically) allocate its de­
liberation or information gathering resources across multiple 
actions that it has to choose among. We show this to be MV-
hard even when evaluating each individual action is extremely 
simple. In the third metareasoning problem (Section 4), the 
agent has to (dynamically) choose a limited number of delib­
eration or information gathering actions to disambiguate the 
state of the world. We show that this is NP-hard under a 
natural restriction, and PSPACE-hard in general. 

These results have general applicability in that most metar­
easoning systems must somehow deal with one or more of 
these problems (in addition to dealing with other issues). We 
also believe that these results give a good basic overview of 
the space of high-complexity issues in metareasoning. 

2 Allocating anytime algorithm time across 
problems 

In this section we study the setting where an agent has to 
allocate its deliberation time across different problems—each 
of which the agent can solve using an anytime algorithm. We 
show that this is hard even if the agent can perfectly predict 
the performance of the anytime algorithms. 

2.1 Mot iva t ing example 
Consider a newspaper company that has, by midnight, re­
ceived the next day's orders from newspaper stands in the 3 
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cities where the newpaper is read. The company owns a fleet 
of delivery trucks in each of the cities. Each fleet needs its 
vehicle routing solution by 5am. The company has a default 
routing solution for each fleet, but can save costs by improv­
ing (tailoring to the day's particular orders) the routing solu­
tion of any individual fleet using an anytime algorithm. In this 
setting, the "solution qual i ty" that the anytime algorithm pro­
vides on a fleet's problem instance is the amount of savings 
compared to the default routing solution. 

We assume that the company can perfectly predict the sav­
ings made on a given fleet's problem instance as a function of 
deliberation time spent on it (we w i l l prove hardness of metar-
easoning even in this deterministic variant). Such functions 
are called (deterministic) performance profiles [ 2 ,6 ,8 ,9 ,20 ] . 
Each fleet's problem instance has its own performance pro­
file.1 Suppose the performance profiles are as shown in Fig. 1. 

Figure 1: Performance profiles for the routing problems. 

Then the maximum savings we can obtain wi th 5 hours of 
deliberation time is 2.5, for instance by spending 3 hours on 
instance 1 and 2 on instance 2. On the other hand, if we had 
until 6am to deliberate (6 hours), we could obtain a savings 
of 4 by spending 6 hours on instance 3. 

2.2 D e f i n i t i o n s a n d resu l ts 

We now define the metareasoning problem of allocating de­
liberation across problems according to performance profiles. 

Def in i t ion 1 ( P E R F O R M A N C E - P R O F I L E S ) We are 
given a list of performance profiles ( f i , f2, • • •, fm) (where 
each f, is a nondecreasing function of deliberation time, 
mapping to nonnegative real numbers), a number of de­
liberation steps N, and a target value K. We are asked 
whether we can distribute the deliberation steps across the 

'Because the anytime algorithm's performance differs across in­
stances, each instance has its own performance profile (in the set­
ting of deterministic performance profiles). In reality, an anytime 
algorithm's performance on an instance cannot be predicted per­
fectly. Rather, usually statistical performance profiles are kept that 
aggregate across instances. In that light one might question the as­
sumption that different instances have different performance pro­
files. However, sophisticated deliberation control systems can con­
dition the performance prediction on features of the instance—and 
this is necessary if the deliberation control is to be fully normative. 
(Research has already been conducted on conditioning performance 
profiles on instance features [8,9,15] or results of deliberation on 
the instance so far [4,8,9,15,18-20].) 

problem instances to get a total performance of at least K; 
that is, whether there exists a vector with 

i 

A reasonable approach to representing the performance 
profiles is to use piecewise linear performance profiles. They 
can model any performance profile arbitrarily closely, and 
have been used in the resource-bounded reasoning litera­
ture to characterize the performance of anytime algorithms 
(e.g. [2]). We now show that the metareasoning problem is 
AfP-complete even under this restriction. We w i l l reduce 
from the KNAPSACK problem.2 

Theorem 1 PERFORMANCE-PROFILES is NP-complete 
even if each performance profile is continuous and piecewise 
linear.3. 

Proof: The problem is in MV because we can nondctermin-
istically generate the in polynomial time (since we do not 
need to bother trying numbers greater than N), and given the 

we can verify if the target value is reached in polyno­
mial time. To show NP-hardness, we reduce an arbitrary 
KNAPSACK instance to the fo l lowing PERFORMANCE-

2This only demonstrates weak NP-completencss, as KNAP­
SACK is weakly NP-complete; thus, perhaps pseudopolynomial 
time algorithms exist. 

3 I f one additionally assumes that each performance profile is 
concave, then the metareasoning problem is solvable in polynomial 
time [2]. While returns to deliberation indeed tend to be diminish­
ing, usually this is not the case throughout the performance profile. 
Algorithms often have a setup phase in the beginning during which 
there is no improvement. Also, iterative improvement algorithms 
can switch to using different local search operators once progress has 
ceased using one operator (for example, once 2-swap has reached a 
local optimum in TSP, one can switch to 3-swap and obtain gains 
from deliberation again) [16]. 
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So we have found a solution to 

the PERFORMANCE-PROFILES instance. On the other 
hand, suppose there is a solution to the PERFORMANCE-

The PERFORMANCE-PROFILES problem occurs natu­
rally as a subproblem within many metareasoning problems, 
and thus its complexity leads to significant difficulties for 
metareasoning. This is the case even under the (unrealistic) 
assumption of perfect predictability of the efficacy of deliber­
ation. On the other hand, in the remaining two metareasoning 
problems that we analyze, the complexity stems from uncer­
tainty about the results that deliberation will provide. 

3 Dynamically allocating evaluation effort 
across options (actions) 

In this section we study the setting where an agent is faced 
with multiple options (actions) from which it eventually has 
to choose one. The agent can use deliberation (or information 
gathering) to evaluate each action. Given limited time, it has 
to decide which ones to evaluate. We show that this is hard 
even in very restricted cases. 

3.1 Mot iva t ing example 
Consider an autonomous robot looking for precious metals. It 
can choose between three sites for digging (it can dig at most 
one site). At site A it may find gold; at site B, silver; at site 
C, copper. If the robot chooses not to dig anywhere, it gets 
utility 1 (for saving digging costs). If the robot chooses to dig 
somewhere, the utility of finding nothing is 0; finding gold, 
5; finding silver, 3; finding copper, 2. The prior probability of 
there being gold at site A is 1/8, that of finding silver at site B 
is 1/2, and that of finding copper at site C is 1/2. 

In general, the robot could perform deliberation or infor­
mation gathering actions to evaluate the alternative (digging) 
actions. The metareasoning problem would be the same for 
both, so for simplicity of exposition, we wil l focus on in­
formation gathering only. Specifically, the robot can perform 
tests to better evaluate the likelihood of there being a precious 
metal at each site, but it has only limited time for such tests. 
The tests are the following: (1) Test for gold at A. If there 
is gold, the test will be positive with probability if there 
is no gold, the test wil l be positive with probability 1/15. This 
test takes 2 units of time. (2) Test for silver at B. If there 
is silver, the test wil l be positive with probability 1; if there 

is no silver, the test wil l be positive with probability 0. This 
test takes 3 units of time. (3) Test for copper at C. If there 
is copper, the test will be positive with probability l;if there 
is no copper, the test will be positive with probability 0. This 
test takes 2 units of time. 

Given the probabilities of the tests turning out positive un­
der various circumstances, one can use Bayes' rule to com­
pute the expected utility of each digging option given any 
(lack of) test result. For instance, letting be the event that 

utility is Doing a similar analysis everywhere, we can rep­
resent the problem by trees shown in Fig. 2. In these trees, be-

Figure 2: Tree representation of the action evaluation in­
stance. 

ing at the root represents not having done a test yet, whereas 
being at a left (right) leaf represents the test having turned 
out positive (negative); the value at each node is the expected 
value of digging at this site given the information correspond­
ing to that node. The values on the edges are the probabilities 
of the test turning out positive or negative. We can subse­
quently use these trees for analyzing how we should gather 
information. For instance, if we have 5 units of time, the op­
timal information gathering policy is to test at B first; if the 
result is positive, test at A; otherwise test at C. (We omit the 
proof because of space constraint.) 

3.2 Definit ions 
In the example, there were four actions that we could eval­
uate: digging for a precious metal at one of three locations, 
or not digging at all. Given the results of all the tests that 
we might undertake on a given action, executing it has some 
expected value. If, on the other hand, we do not (yet) know 
all the results of these tests, we can still associate an expected 
value with the action by taking an additional expectation over 
the outcomes of the tests. In what follows, we will drop the 
word "expected" in its former meaning (that is, when talk­
ing about the expected value given the outcomes of all the 
tests), because the probabilistic process regarding this expec­
tation has no relevance to how the agent should choose to test. 
Hence, all expectations are over the outcomes of the tests. 

While we have presented this as a model for information 
gathering planning, we can use this as a model for planning 
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(computational) deliberation over multiple actions as well. In 
this case, we regard the tests as computational steps that the 
agent can take toward evaluating an action.4 

To proceed, we need a formal model of how evaluation 
effort (information gathering or deliberation) invested on a 
given action changes the agent's beliefs about that action. 
For this model, we generalize the above example to the case 
where we can take multiple evaluation steps on a certain ac­
tion (although we will later show hardness even when we can 
take at most one evaluation step per action). 

Definition 3 An action evaluation tree is a tree with 

• A root r, representing the start of the evaluation; 

• For each nonleafnode w, a cost kwfor investing another 
step of evaluation effort at this point; 

• For each edge e between parent node p and child node 
c, a probability of transitioning from p to c 
upon taking a step of evaluation effort at p; 

• For each leaf node value 

According to this definition, at each point in the evalua­
tion of a single action, the agent's onlv choice is whether to 
invest further evaluation effort, but not how to continue the 
evaluation. This is a reasonable model when the agent does 
evaluation through deliberation and has one algorithm at its 
disposal. However, in general the agent may have different 
information gathering actions to choose from at a given point 
in the evaluation, or may be able to choose from among sev­
eral deliberation actions (e.g., via search control [1,141). In 
Section 4, we wil l discuss how being able to choose between 
tests may introduce drastic complexity even when evaluating 
a single thing. In this section, however, our focus is on the 
complexities introduced by having to choose between differ­
ent actions on which to invest evaluation effort next. 

The agent can determine its expected value of an action, 
given its evaluation so far, using the subtree of the action 
evaluation tree that is rooted at the node where evaluation has 
brought us so far. This value can be determined in that sub­
tree by propagating upwards from the leafs: for parent p with 
a set of children C, we have 

We now present the metareasoning problem. In general, 
the agent could use an online evaluation control policy where 
the choices of how to invest future evaluation effort can de­
pend on evaluation results obtained so far. However, to avoid 
trivial complexity issues introduced by the fact that such a 
contingency strategy for evaluation can be exponential in size, 
we merely ask what action the agent should invest its first 
evaluation step on. 

Definition 4 (ACTION-EVALUATION) We are given I ac­
tion evaluation trees, indexed 1 through I, corresponding to 
I different actions. (The transition processes of the trees are 
independent.) Additionally, we are given an integer N. We 
are asked whether, among the online evaluation control poli­
cies that spend at most N units of effort, there exists one that 

4For this to be a useful model, it is necessary that updating be­
liefs about the value of an action (after taking a deliberation step) is 
computationally easy relative to the evaluation problem itself. 

takes its first evaluation step on action J, and gives maximal 
expected utility among online evaluation control policies that 
spend at most N units of effort. (If at the end of the deliber­
ation process, we are at node for tree then our utility is 
max because we will choose the action with the 
highest expected value.) 

3.3 Results 
We now show that even a severely restricted version of this 
problem is NP-hard.5 

Theorem 2 ACTION-EVALUATION is NP-hard, even when 
all trees have depth either 0 or I, branching factor 2, and all 
leaf values are -I, 0, or I. 

vations about the constructed ACTION-EVALUATION in­
stance. First, once we determine the value of a action to 
be 1, choosing this action is certainly optimal regardless of 
the rest of the deliberation process. Second, if at the end of 
the deliberation process we have not discovered the value of 
any action to be 1, then for any of the trees of depth 1, ei­
ther we have discovered the corresponding action's value to 
be - 1 , or we have done no deliberation on it at all. In the 
latter case, the expected value of the action is always below 
0 is carefully set to achieve this). Hence, we will pick 
action 3 for value 0. It follows that an optimal deliberation 
policy is one that maximizes the probability of discovering 
that a action has value 1. Now, consider the test set of a pol­
icy, which is the set of actions that the policy would evaluate 
if no action turned out to have value 1. Then, the probabil­
ity of discovering that a action has value 1 is simply equal 
to the probability that at least one of the actions in this set 
has value 1. So, in this case, the quality of a policy is de­
termined by its test set. Now we observe that any optimal 
action is either the one that only evaluates action 2 (and then 
runs out of deliberation time), or one that has action 1 in its 

5ACTION-EVALUATION is trivial for / = 1: the answer is 
"yes" if it is possible to take a step of evaluation. The same is true if 
there is no uncertainty with regard to the value of any action; in that 
case any evaluation is irrelevant. 

6Note that using m in the exponent does not make the reduction 
exponential in size, because the length of the binary representation 
of numbers with in the exponent is linear in 
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test set. (For consider any other policy; since evaluating ac­
tion 1 has minimal cost, and gives strictly higher probability 
of discovering a action with value 1 than evaluating on any 
other action besides 2, simply replacing any other action in 
the test set with action 1 is possible and improves the pol­
icy.) Now suppose there is a solution to the KNAPSACK 
instance, that is, a set S such that and 

Then we can construct a policy which has as 

test set (Evaluating all these 
actions costs at most deliberation units.) The proba­
bility of at least one of these actions having value 1 is at least 
the probability that exactly one of them has value 1, which is 

Using our previous observation we 
can conclude that there is an optimal action that has action 1 
in its test set, and since the order in which we evaluate ac­
tions in the test set does not matter, there is an optimal policy 
which evaluates action 1 first. On the other hand, suppose 
there is no solution to the KNAPSACK instance. Consider a 
policy which has 1 in its test set, that is, the test set can be 
expressed as for some set Then 
we must have and since there is no solution to 

the KNAPSACK instance, it follows that But 

the probability that at least one of the actions in the test set 
has value 1 is at most 

On the other hand, 
If we now observe that 

it follows 

that the policy of just evaluating action 2 is strictly better. So, 
there is no optimal policy which evaluates action 1 first. 

We have no proof that the general problem is in It 
is an interesting open question whether stronger hardness re­
sults can be obtained for it. For instance, perhaps the general 
problem is -complete. 

4 Dynamically choosing how to disambiguate 
state 

We now move to the setting where the agent has only one 
thing to evaluate, but can choose the order of deliberation (or 
information gathering) actions for doing so. In other words, 
the agent has to decide how to disambiguate its state. We 
show that this is hard. (We consider this to be the most sig­
nificant result in the paper.) 

4.1 Mot iva t ing example 
Consider an autonomous robot that has discovered it is on the 
edge of the floor; there is a gap in front of it. It knows this gap 
can only be one of three things: a staircase (5), a hole ( i / ) , or 
a canyon (C) (assume a uniform prior distribution over these). 
The robot would like to continue its exploration beyond the 
gap. There are three courses of physical action available to 
the robot: attempt a descent down a staircase, attempt to jump 

over a hole, or simply walk away. If the gap turns out to be 
a staircase and the robot descends down it, this gives utility 
2. If it turns out to be a hole and the robot jumps over it, this 
gives utility 1 (discovering new floors is more interesting). If 
the robot walks away, this gives utility 0 no matter what the 
gap was. Unfortunately, attempting to jump over a staircase 
or canyon, or trying to descend into a hole or canyon, has the 
disastrous consequence of destroying the robot (utility ). 
It follows that if the agent cannot determine with certainty 
what the gap is, it should walk away. 

In order to determine the nature of the gap, the robot can 
conduct various tests (or queries). The tests can determine 
the answers to the following questions: (1) Am I inside a 
building? A yes answer is consistent only with S\ a no answer 
is consistent with 5, H, C. (2) If I drop a small item into the 
gap, do I hear it hit the ground? A yes answer is consistent 
with S, H\ a no answer is consistent with H, C. (3) Can 1 
walk around the gap? A yes answer is consistent with S, H; 
a no answer is consistent with S, H, C. 

Assume that if multiple answers to a query are consistent 
with the true state of the gap, the distributions over such an­
swers are uniform and independent. Note that after a few 
queries, the set of states consistent with all the answers is 
the intersection of the sets consistent with the individual an­
swers; once this set has been reduced to one element, the 
robot knows the state of the gap. 

Suppose the agent only has time to run one test. Then, 
to maximize expected utility, the robot should run test 1, be­
cause the other tests give it no chance of learning the state of 
the gap for certain. Now suppose that the agent has time for 
two tests. Then the optimal test policy is as follows: run test 
2 first; if the answer is yes, run test 1 second; otherwise, run 
test 3 second. (If the true state is 5, this is discovered with 
probability if it is H, this is discovered with probability 
so total expected utility is Starting with test 1 or test 3 can 
only give expected utility 

4.2 Definit ions 

We now define the metareasoning problem of how the agent 
should dynamically choose queries to ask (deliberation or in­
formation gathering actions to take) so as to disambiguate the 
state of the world. While the illustrative example above was 
for information gathering actions, the same model applies to 
deliberation actions for state disambiguation (such as image 
processing, auditory scene analysis, sensor fusing, etc.). 

Definition 5 (STATE-DISAMBIGUATION) We are given 

of possible world states;1 

A probability function p over 

7 I f there are two situations that are equivalent from the agent's 
point of view (the agent's optimal course of action is the same and 
the utility is the same), then we consider those situations to be one 
state. Note that two such situations may lead to different answers 
to the queries. For example, one situation may be that the gap is 
an indoor staircase, and another situation may be that the gap is an 
outdoor staircase. These situations are considered to be the same 
state, but will give different answers to the query "Am I inside?". 
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A utility function where gives the 
utility of knowing for certain that the world is in state 
at the end of the metareasoning process; (not knowing 
the state of the world for certain always gives utility 

A query set where each is a list of subsets 
of Each such subset corresponds to an answer to 
the query, and indicates the states that are consistent 
with that answer. We require that for each state, at least 
one of the answers is consistent with it: that is, for any 

we have When 
a query is asked, the answer is chosen (uniformly) ran­
domly by nature from the answers to that query that are 
consistent with the world's true state (these drawings are 
independent); 

An integer N; A target value G. 

We are asked whether there exists a policy for asking at most 
N queries that gives expected utility at least G 
be the probability of identifying the state when it is the 
expected utility is given by 

4.3 Results 

Before presenting our hardness result, we will first 
present a relatively straightforward hardness result for 
the case where for each query, only one answer is consistent 
with the state of the world. This situation occurs when the 
states are so specific as to provide enough information to an­
swer every query. Our reduction is from 

Definition 6 (SET-COVER) We are given a set a collec­
tion of subsets and a positive integer M. We 
are asked whether any M of these subsets cover that is, 
whether there is a subcollection such that 
and 

Theorem 3 STATE-DISAMBIGUATION is hard, even 
when for each state-query pair there is only one consistent 
answer. 

Proof: We reduce an arbitrary SET-COVER instance to the 
following STATE-DISAMBIGUATION instance. Let 

Let be uniform. Let and for any 
let 0. Q 

We claim the instances are equivalent. 

8Therc arc several natural generalizations of this metareasoning 
problem, each of which is at least as hard as the basic variant. One 
allows for positive utilities even if there remains some uncertainty 
about the state at the end of the disambiguation process. In this more 
general case, the utility function would have subsets of as its do­
main (or perhaps even probability distributions over such subsets). 
In general, specifying such utility functions would require space ex­
ponential in the number of states, so some restriction of the utility 
function is likely to be necessary; nevertheless, there are utility func­
tions specifiable in polynomial space that are more general than the 
one given here. Another generalization is to allow for different dis­
tributions for the query answers given. One could also attribute dif­
ferent execution costs to different queries. Finally, it is possible to 
drop the assumption that queries completely rule out certain states, 
and rather take a probabilistic approach. 

First suppose there is a solution to the SET-COVER in­
stance, that is, a subcollection such that 
M and Then our policy for the STATE-
DISAMBIGUATION instance is simply to ask the queries 
corresponding to the elements of in whichever order and 
unconditionally on the answers of the query. If the true state 
is in 5, we will get utility regardless. If the true state is 
each query will eliminate the elements of the corresponding 

from consideration. Since is a set cover, it follows that 
after all the queries have been asked, all elements of S have 
been eliminated, and we know that the true state of the world 
is to get utility 1. So the expected utility is so there 
is a solution to the STATE-DISAMBIGUATION instance. 

On the other hand, suppose there is a solution to the 
STATE-DISAMBIGUATION instance, that is, a policy for 
asking at most N queries that gives expected utility at least 
G. Because given the true state of the world, there is only 
one answer consistent with it for each query, it follows that 
the queries that wil l be asked, and the answers given, follow 
deterministically from the true state of the world. Since we 
cannot derive any utility from cases where the true state of the 
world is not 6, it follows that when it is b, we must be able to 
conclude that this is so in order to get positive expected utility. 
Consider the queries that the policy will ask in this latter case. 
Each of these queries will eliminate precisely the correspond­
ing Since at the end of the deliberation, all the elements of 
5 must have been eliminated, it follows that these in fact 
cover S. Hence, if we let be the collection of these this 
is a solution to the SET-COVER instance. 

We are now ready to present our hardness re­
sult. The reduction is from stochastic satisfiability, which is 

complete [11]. 

Definition 7 (STOCHASTIC-SAT (SSAT)) We are given a 
Boolean formula in conjunctive normal form (with a set of 
clauses _ over variables We 
play the following game with nature: we pick a value for 
subsequently nature (randomly) picks a value for y1, where­
upon we pick a value for after which nature picks a value 
for etc., until all variables have a value. We are asked 
whether there is a policy (contingency plan) for playing this 
game such that the probability of the formula being eventu­
ally satisfied is at least 

Now we can present our hardness result. 
Theorem 4 STATE-DISAMBIGUATION is hard. 

Proof: Let where consists of the 
elements of an upper triangular matrix, that is, 

. p is 
uniform over this set. u is defined as follows: for 
a l l f o r 

all where Nans(q) is the number of possible an­
swers to The queries are as follows. For every 
there is a query Additionally, for 
each variable there are the following two queries: letting 

(that is, row i in the matrix), and letting 
we have 
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We have n steps of deliberation. Finally, the goal is G = 
First suppose there is a solution to the SSAT in­

stance, that is, there exists a contingency plan for setting the 
xt such that the probabil ity that the formula is eventually sat­
isfied is at least . Now, if we ask query we say 
this corresponds to us selecting if the answer to 
query is we say 
this corresponds to nature selecting Then, consider 
the fol lowing contingency plan for asking queries: 

• Start by asking the query corresponding to how the first 
variable is set in the SSAT instance (that is, if is 
set to true, if is set to false)', 

• So long as all the queries and answers correspond to 
variables being selected, we fol low the SSAT contin­
gency plan; that is, whenever we have to ask a query, we 
ask the query that corresponds to the variable that would 
be selected in the SSAT contingency plan if variables so 
far had been selected in a manner corresponding to the 
queries and answers we have seen; 

• If, on the other hand, we get as an answer, we proceed 
to ask in that order; 

• Finally, if we get C as an answer, we simply stop. 

We make two observations about this policy. First, if the 
true state of the world is one of the we w i l l certainly 
discover this. (Upon asking query which is or 
we w i l l receive answer V1 and switch to qk queries; then if 

query w i l l be we w i l l receive answer 
and know the state; whereas if we w i l l eliminate all 
the other elements of wi th queries 1 through and 
know the state.) Second, if the true state is b, for any 

query w i l l be either This w i l l certainly 
eliminate all the , so we wi l l know the state at the end if 
and only if we also manage to eliminate all the clauses. But 
now notice that each query-answer pair eliminates exactly the 
same clauses as the corresponding variable selections satisfy. 
It fol lows that we wi l l know the state in the end if and only if 
these corresponding variable selections satisfy all the literals. 
But the process by which the queries and answers are selected 
is exactly the same as in the SSAT instance wi th the solution 
policy. It fol lows we discover the true state wi th probability 
at least 1/2. Hence, our total expected uti l i ty is at least 

G. So there is a policy that achieves the goal. 

Now suppose there is a policy that achieves the goal. We 
first claim that such a policy w i l l always discover the true 
state if it is one of the For if a policy does not manage 
this, then there is some such that for some combination 
of answers consistent w i th , the policy w i l l not discover 
the state. Suppose this is indeed the true state. Since each 
consistent answer to query occurs wi th probability at least 

it fol lows that the unfavorable combination of an­
swers occurs wi th probabil i ty at least It fol lows 

that even if we discover the true state in every other scenario, 

we may assume that the policy that achieves the target 
value asks one of the former two in this case as wel l . It fo l ­
lows that the part of this policy that handles the cases where 
no answers have been either one of the corresponds 
exactly to a valid SSAT policy, according to the correspon­
dence between queries/answers and variable selections out­
lined earlier in the proof. But now we observe, as before, 
that if the true state is the probability that we discover 
this with the STATE-DISAMBIGUATION policy is precisely 
the probability that this SSAT policy satisfies all the clauses. 
This probability must be at least in order for the STATE-
D I S A M B I G U A T I O N policy to reach the target expected ut i l ­
ity value. So there is a solution to the SSAT instance. 

The fol lowing theorem allows us to make any hardness re­
sult on STATE-DISAMBIGUATION go through even when 
restricting ourselves to a uniform prior over states, or to a 
constant uti l i ty function over the states. 

T h e o r e m s Every STATE-DISAMBIGUATION instance is 
equivalent to another STATE-DISAMBIGUATION instance 
with a uniform prior and to another with a constant util­
ity function Moreover, these 
equivalent instances can be constructed in linear time. 

5 Conclusion and future research 
In most real-world settings, due to l imited time or other re­
sources, an agent cannot perform all potentially useful de­
liberation and information gathering actions. This leads to 
the metareasoning problem of selecting such actions care­
fully. Decision-theoretic methods for metareasoning have 
been studied in AI for the last 15 years, but there are few 
theoretical results on the complexity of metareasoning. 

We derived hardness results for three metareasoning prob­
lems. In the first, the agent has to decide how to allocate 
its deliberation time across anytime algorithms running on 
different problem instances. We showed this to be 
complete. In the second, the agent has to (dynamically) allo­
cate its deliberation or information gathering resources across 
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multiple actions that it has to choose among. We showed 
this to be hard even when evaluating each individual ac­
tion is very simple. In the third, the agent has to (dynami­
cally) choose a limited number of deliberation or information 
gathering actions to disambiguate the state of the world. We 
showed that this is hard under a natural restriction, and 

hard in general. 
Our results have general applicability in that most metar-

easoning systems must somehow deal with one or more of 
these problems (in addition to dealing with other issues). The 
results are not intended as an argument against metareason-
ing or decision-theoretic deliberation control. However, they 
do show that the metareasoning policies directly suggested 
by decision theory are not always feasible. This leaves sev­
eral interesting avenues for future research: 1) investigating 
the complexity of metareasoning when deliberation (and in­
formation gathering) is costly rather than limited, 2) devel­
oping optimal metareasoning algorithms that usually run fast 
(albeit, per our results, not always), 3) developing fast op­
timal metareasoning algorithms for special cases, 4) devel­
oping approximately optimal metareasoning algorithms that 
are always fast, and 5) developing meta-mctareasoning algo­
rithms to control the meta-reasoning, etc. 
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