
Data Clustering: Principal Components, Hopfield and Self-Aggregation Networks* 

Chris H.Q. Ding 
NERSC Division, Lawrence Berkeley National Laboratory 

University of California, Berkeley, CA 94720. chqding@lbl.gov 

Abstract 
We present a coherent framework for data cluster­
ing. Starting with a Hopfield network, we show 
the solutions for several well-motivated cluster­
ing objective functions are principal components. 
For MinMaxCut objectives motivated for ensuring 
cluster balance, the solutions are the nonlinearly 
scaled principal components. Using scaled PC A, 
we generalize to multi-way clustering, construct­
ing a self-aggregation network, where connection 
weights between different clusters are automati­
cally suppressed while connection weights within 
same clusters are automatically enhanced. 

1 Introduction 
Principal component analysis (PCA) is widely adopted as an 
effective unsupervised dimension reduction method. PCA is 
extended in many different directions [Hastie and Stuetzle, 
1989; Kramer, 1991; Lee and Seung, 1999; Scholkopf et al, 
1998; Collins et a/., 2001]. 

The main justification is that PCA uses singular value de­
composition (SVD) which is the best low rank approxima­
tion in L2 norm to original data due to Eckart-Young theo­
rem. However, this results alone is inadequate to explain the 
effectiveness of PCA. Here, we provide a new derivation of 
PCA based on optimizing suitable clustering objective func­
tions and show that principal components are actually cluster 
indicator vectors in clustering. 

Hopfield networklHopfield, 1982] provide a convenient 
framework of our study. In particular, the self-aggregation 
network proposed in this work uses Hebb rule to encode pat­
tern vectors. One feature of Hopfield associative-memory 
networks is that it can be adopted to solve hard combinato­
rial problems[Haykin, 1998 2nd ed]. 

Another thread of this work is the spectral graph partition­
ing [Fiedler, 1973; Pothen et al., 1990; Hagen and Kahng, 
1992; Shi and Malik, 2000; Ding et al, 2001a; 2001b; 
Ng et al., 2001; Meila and Shi, 2001], which uses Laplacian 
matrix of a graph. This arises naturally for balancing the clus­
ters (see Our approach differs from others mainly in 
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well-motivated clustering objective functions. A further point 
is the recognition that spectral graph clustering is embedded 
in the scaled PCA thus leading to self-aggregation networks. 

This paper combines above three threads and develop a 
coherent framework for clustering. We begin with two-way 
clustering in and generalize to multi-way clustering in §3. 

2 Two-way clustering 
We start by formulate two-way clustering as a Hopfield net­
work and derive PCA as cluster indicator vectors. 

2.1 Hopfield Network and PCA 
Given n data points and properly defined similarity or associ­
ation 0 between points i, j, we form a network 
(a weighted graph) G with as the connection between 
nodes We wish to partition it into two clusters Cj,c2. 
The result of clustering can be represented by an indicator 
vector q, where 

(1) 

Consider the clustering objective, 

ity of c1, and analogously for s(c2, c2). 
Now we propose a min-max clustering principle: data 

points are grouped into clusters such that the overlap s(c1, c2) 
between different clusters are minimized while within-cluster 
similarities are maximized 

(3) 
These conditions can be simultaneously satisfied by maximiz­
ing the energy (objective function) J1. Using Hopfield model 
[Hopfield, 1982], the solution is obtained by the update rule 

or in vector form If one relaxes q(i) 
from discrete indicators to continuous values in ( -1 ,1 ) , the 
solution q is given by 

(4) 
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Since the matrix entries in W are non-negative, the first prin­
cipal eigenvector qi has all positive (or all negative) entries. 
Thus the desired solution is q2. 

2.2 Hopfield network for bipartite graph 
Here we extend the Hopfield networks for clustering bipar­
tite graph. An example of bipartite graph is a m x n term-
document association matrix , where each row rep­
resents a word, each column represents a document, and btJ 
the counts of co-occurrence of row rt and column We 
show that the solution for clustering indicators is precisely 
the Latent Semantic Indexing[Deerwester el al, 19901 

We wish to partition the r-type nodes of R into two parts 
R1, R2 and simultaneously partition the otype nodes of C into 
two parts based on the clustering principle of mini­
mizing between-cluster association and maximizing within-
cluster association. We use indicator vector f to determine 
how to split R into = 1, or -1 depending on 

We use g to determine how to split C into 
-1 depending on 

(For presentation purpose, we index the nodes such that 
nodes within same cluster are indexed contiguously. The 
clustering algorithms presented are independent to this as­
sumption. Bold face lower case letters are vectors. Matri­
ces are denoted by upper case letters.) Thus we may write 

(5) 

It is convenient to convert the bipartite graph into an undi­
rected graph. We follow standard procedure and combine the 
two types nodes to one by setting 

(6) 

This induces an undirected graph G, whose adjacency matrix 
is the symmetric weight matrix W. 

Consider the following objective function, 

(7) 

where , the sum of association 
between R1 and C2, and S(R1 ,C2 ) is the sum of association 
between R1 and c2. S(RI,C2) and S(R 2 ,C I ) should be mini­
mized. S(R1 , C\) is the sum of association within cluster 1 (see 
Fig.l), and s(R2,c2) is the sum of association within cluster 
2. S(R1 , C1) and S(R2, C2) should be maximized. These condi­
tions are simultaneously satisfied by maximizing J2. 

We can write down the Hopfield network update rule for q. 
If one relaxes q{i) from discrete indicators to continuous val­
ues, the solution q satisfies Eq.(4). Now utilizing the explicit 
structures of W and q, we have 

(8) 

The solutions to this equation are the singular value decom­
position (SVD) of B: { f ; } are left singular vectors and {g,} 
are right singular vectors of the SVD of £?, 

(9) 

Again, since the matrix entries in W are non-negative, the 
first principal components have entries of same sign; 
thus the desired solutions are 112, V2. Note that this is also the 
SVD employed in LSI. We summarize these results in 
Theorem 1. Principal components are solutions for clus­
tering indicators for clustering undirect graphs and bipartite 
graphs under appropriate Hopfield network models. 

2.3 Principal component clustering 
In the objective J1, we may explicitly enforce a balance of 
clusters From Eq. l , we need to minimize 
Thus we consider the clustering objective, 

(10) 

where is a parameter and e — We adjust u 
to control the levele of balance between The principal 
eigenvector q1 of is the desired indicator 
vector. 

What is the reasonable choice of, A natural choice is to 
set the average of wiJ. With this 
choice, the modified weight matrix satisfies the sum-to-zero 
condition: 

(11) 

This condition can be further refined by centering each col­
umn and each rows, such that 

(12) 

where 
(13) 

(here column and row sums, 
and w are standard notations in statistics.) Now the desired 
cluster indicator vector is the principal eigenvector of 

The fully centered W has a useful property that all eigen­
vectors of W with nonzero eigenvalues have the sum-to-zero 
property: = 0. This is because (1) q0 = e is an 
eigenvector of W with (2) all other eigenvectors are 
orthogonal to qo, i.e, 

The sum-to-zero condition = 0 does not necessar­
ily imply that the sizes of the two cluster, should be 
equal. In fact, the cluster indicator vector should be refined to 

(14) 
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(in this paper, all vectors are implicitly normalized to 1 using 
L2 norm). Correspondingly, the clustering objective becomes 

(15) 
Clearly, the first two terms represent the average within-
clustcr similarities which are maximized, and the 3rd term 
represent average betwcen-cluster similarities which are min­
imized. The factor encourages cluster balance, since 

is reached when = 
We summarize these results in 

Theorem 2. Solution for clustering objective is given by 
q i ; and solution for clustering objective 

We call these clustering schemes with objective functions 
as principal component clustering methods because 

of the use of principal components. 
Al l above discussions apply to bipartite graphs. For exam­

ple, J1 becomes 

(16) 

where are sizes of row clusters , — total 
row size); and are sizes of column clusters + 

column size). Again, the first two terms represent 
the average within-cluster similarities which are maximized, 
and the last two terms represent average between-cluster sim­
ilarities which are minimized. 

We note that is partially motived by the classic scal­
ing (also called principal coordinate analysis) in statistics 
iBorg and Gronen, 1997]. Suppose we are given pairwise 
distances for a dataset, define the pairwise similarity as 

, follow through the same centering procedures 
and solve for the eigenvectors of W. The classic scaling the­
orem proves that if dtJ are the Euclidean distances, the first 
A" eigenvectors of W wil l recover the original coordinates. 
This theorem justifies the use of the K principal eigenvec­
tors as the coordinates in multidimensional scaling. However, 
our clustering approach does not emphasize the recovery of 
original coordinates, and the objective function is well-
motivated for clustering only. 

(17) 

Although are maximized, it often oc­
curs that one cluster is much larger than another, 

or vice versa. 

'Since exp(rr) is monotonic, max J1 maxexp , which 
is minexp ]. This is approx­
imately Eq.17. 

clustering balancing using MinMaxCut objective of Eq.(22) 
over the simple objective Eq.(7) is the scaling of the associ­
ation matrix B in Eq.(25). However, with this scaling, the 
self-aggregation property emerges (see 

Using the representation W and q of Eq.6, and similar deriva­
tion [Ding, 2003; Zha et al, 2001 J, the solution for optimiza­
tion of J4 is also given by Eq.21. Let Dr = diag(Be) and 

we have 

2.5 Cluster balance for bipartite graphs 
For balanced clustering of bipartite graphs, object function of 
Eq.(7) becomes 

Again, the desired solutions is the eigenvector associated 
with the second largest eigenvalue. Note that by comparing 
Eq.(21) with Eq.(4), the net effect for cluster balance is di­
agonal scaling. This diagonal scaling, however, leads to an 
important feature of self-aggregation (see §3.2). 

(21) 

(20) 

which can be written as 

To overcome this problem, we seek to prevent either 
s(c1,C2) or s(c2,c2) become very small. We optimizelDing 
et a/., 2001b] 

(19) 

(18) 



482 LEARNING 

are the K eigenvectors with eigenvalue is a lin­
ear combination of K step functions, i.e., piece-wise constant 
function. Clearly, all data objects within the same cluster have 
identical elements in q. The coordinate of object i in the K-
dim SPCA space is Thus objects 
within a cluster are located at (self-aggregate into) the same 
point in SPAC space. 

Scaled principal components are not unique, since C could 
be any orthogonal matrix. However, 

(30) 

Clusters overlap 
Consider the case when overlaps among different clusters 

exist. The overlaps are treated as a perturbation. Theorem 
3. At the first order, the K scaled principal components and 
their eigenvalues have the form 

Several features of SPCA can be obtained from Theorem 3: 
Corollary 3.1. SA network has the same block di­
agonal form of Eq.(30), within the accuracy of Theorem 2. 
This assures that objects within the same cluster will self-
aggregate as in Theorem 1. 
Corollary 3.2. The first scaled principal component is qi = 

and q i 
are also the exact solutions to the original Eq.(20). 
Corollary 3.3. When K = 2, the second principal compo­
nent is 

(32) 

(33) 

3 A -way clustering 
The above mainly focus on 2-way clustering. Below we gen­
eralize to A'-way clustering, K > 2. The generalization is 
based on the key observation that the solution for cluster in­
dicator vectors (see §2.4 and §2.5) are scaled principal com­
ponents, as we discuss next. 

3.1 Scaled principal components 
Associations among data objects are mostly quantified by a 
similarity metric. The scaled principal component approach 
starts with a nonlinear (non-uniform) scaling of W. Noting 
that W - D1/2(D'x'2WD'l'2)Dl'2t we apply spectral 
decomposition on the scaled matrix 

Note Eq.(27) is identical to Eq.(20), or Eq.(21), thus scaled 
principal components are cluster indicator vectors in Min-
MaxCut (see §2.3). 

3.2 Self-aggregation network 
In Hopfield networks, a pattern q1 is encoded into the net­
work as (the Hebb rule); multiple patterns are encoded 
additively. In our problem, a pattern is a cluster partitioning 
indicator vector. We define a self-aggregation network with 
the connection weights 

. Here we highlights several important 
properties of WSA and provides several example applica­
tions. (Self-aggregation is first studied in [Ding et al, 2002].) 

has an interesting self-aggregation property enforced 
by within-cluster association (connectivity). To prove, we ap­
ply perturbation analysis by writing , 
where is the similarity matrix when clusters are well-
separated (zero-overlap) and accounts for the overlap 
among clusters and is treated as a perturbationlDing et aL, 
2001a]. This perturbation approach is standard in quantum 
physics[Mathews and Walker, 1971]. 



Note that this is precisely J3 of Eq.18, the clustering objective 
we started with: our clustering framework is consistent. 
Example 1. A dataset of 3 clusters with substantial ran­
dom overlap between the clusters. Al l edge weights are 1. 
The similarity matrix and results are shown in Fig.l , where 
nonzero matrix elements are shown as dots. The exact and 
approximate from Theorem 3 are close: 

WSA is much sharper than the original weight matrix W 
clearly due to self-aggregation: connections between differ­
ent clusters are substantially suppressed while connections 
within same clusters are substantially enhanced. 

Figure 1: Left: similarity matrix W. Diagonal blocks repre­
sent weights inside clusters and off-diagonal blocks represent 
overlaps between clusters. Right: Computed WSA-

Application 1. In DNA micro-array gene expression pro­
filing, responses of thousands of genes from tumor tissues 
are simultaneously measured. We apply SPCA framework 
to gene expression profiles of lymphoma cancer sampleslAl-
izadeh ex al, 2000]. Three cancer and three normal subtypes 
are shown in Fig.2. This is a difficult case due to the large 
variations of cluster sizes (the number of samples in each sub­
type are shown in parentheses in Fig.2B). Self-aggregation is 
evident in Figure 2B and 2C. The computed clusters corre­
spond quite well to the normal and cancer subtypes identified 
by human experts. 

3.3 Dynamic aggregation 
The self-aggregation process can be repeated to obtain 
sharper clusters. W& is the low-dimensional projection that 
contains the essential cluster structure. Combining this struc­
ture with the original similarity matrix, we obtain a new sim­
ilarity matrix containing sharpened cluster information: 

(34) 

w h e r e , the weight matrix a t f-th 
iteration, Setting is crucial for enforcing the cluster 
structure. 

Applying SA net on W^ leads to further aggregation (see 
Figure 2C). The eigenvalues of the 1st and 2nd SA net are 
shown in the insert in Figure 1C. As iteration proceeds, a clear 
gap is developed, indicating that clusters becoming more sep­
arated. 

Figure 2: Gene expression profiles of cancerous and normal lym­
phoma tissues samples from Alizadeh et al. in original Euclidean 
space (A), in scaled FCA space (B), and in scaled PCA space after 
one iteration of Eq.34 (C). In all 3 panels, objects in original space 
are shown in 2D-view spanned by the first two PCA components. 
Cluster structures become clearer due to self-aggregation. The in­
sert in (C) shows the eigenvalues of the 1st and 2nd SA network. 

Noise reduction 
SA net has noises. For example, WSfii has sometimes nega­

tive weights (WSA)ij whereas we expect them to be nonnega-
tive. However, by Corollaries 2.1 and 3.1, WSA has a diagonal 
block structure and every elements in the block are identical 
(Eq.30) even when overlaps exit. This property allows us to 
interpret as the probability that two objects i, j 
belong to the same cluster: 

To reduce noise in the dynamic aggregation, we set 
(35) 

where and we c h o s e = 0.8. Noise reduction 
is an integral part of SA net. In our experiments, final re­
sults are insensitive to The above dynamic aggregation 
repeats self-aggregation process and forces data objects move 
towards the attractors, which are the desired clusters and their 
principal eigenvalues approach 1 (see insert in Fig.2C). Usu­
ally, after one or two iterations the cluster structure becomes 
evident. 
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3.4 Bipartite graphs 
SPCA applies to bipartite graph problems as wel l . The non­
linear scaling factors are (cf. Eq.23). Let B = 

where is given in Eq.(25). Apply ing SVD 
on B, we obtain 

(36) 

Scaled principal components are for row 

objects and for column objects. They 
have the same self-aggregation and related properties. We 
note that SPCA on bipartite graph leads to correspondence 
analysislGreenacre, 1984] f rom a new perspective. 

The structure of self-aggregation network can be 
meaningfully further decomposed: 

where 
provides the cluster structure for row objects, while 
provides the cluster structure for column objects. The off-
diagonal block matrix provides the sharpened associa­
t ion between row and column objects[Ding, 2003]. 

4 Discussions 
In this paper, we present a data clustering framework based 
on properly motivated Hopfield network, and show the clus­
tering indicators are principal components. Further motivated 
by cluster balance, we extend the framework to MinMaxCut 
that uti l ized the Laplacian matrix of a graph. The frame-
work is generalized to mult i -way clustering, by using scaled 
principal components, and self-aggregation networks are con-
structed. We prove the cluster member self-aggregation prop­
erty of the network. This framework extends naturally to b i ­
partite graphs which leads to row-row, column-column and 
row-column SA nets that simultaneously cluster the row and 
column objects. 

In self-aggregation, data objects move towards each other 
guided by connectivity. This is similar to the self-organizing 
map [Kohonen, 1989], where feature vectors self-organize 
into a 2D feature map whi le data objects remain fixed. A l l 
these have a connection to recurrent networks [Hopfield, 
1982; Haykin, 1998 2nd ed]. In Hopfield network, features 
are stored as associative memories. In more complicated net­
works, connection weights are dynamically adjusted to learn 
or discover the patterns. The self-aggregation network pro­
vides a new mechanism to realize this unsupervised learning. 
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