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Abstract 

Many real life optimization problems contain both 
hard and soft constraints, as well as qualitative con­
ditional preferences. However, there is no single 
formalism to specify all three kinds of informa­
tion. We therefore propose a framework, based 
on both CP-nets and soft constraints, that handles 
both hard and soft constraints as well as conditional 
preferences efficiently and uniformly. We study 
the complexity of testing the consistency of pref­
erence statements, and show how soft constraints 
can faithfully approximate the semantics of condi­
tional preference statements whilst improving the 
computational complexity. 

1 Introduction and Motivation 
Representing and reasoning about preferences is an area of 
increasing interest in theoretical and applied A l . In many 
real life problems, we have both hard and soft constraints, 
as well as qualitative conditional preferences. For example, 
in a product configuration problem, the producer may have 
hard and soft constraints, while the user has a set of con­
ditional preferences. Until now, there has been no single 
formalism which allows all these different kinds of informa­
tion to be specified efficiently and reasoned with effectively. 
For example, soft constraint solvers [Bistarelli et al, 1997; 
Schiex et al, 1995] are most suited for reasoning about the 
hard and soft constraints, while CP-nets [Boutilicr et al, 
1999] are most suited for representing qualitative conditional 
preference statements. In this paper, we exploit a connec­
tion between these two approaches, and define a framework 
based on both CP-nets and soft constraints which can effi­
ciently handle both constraints and preferences. 
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Soft constraints [Bistarelli et al, 1997; Schiex et al, 1995] 
are one of the main methods for dealing with preferences in 
constraint optimization. Each assignment to the variables of a 
constraint is annotated with a level of its desirability, and the 
desirability of a complete assignment is computed by a com­
bination operator applied to the "local" preference values. 
Whilst soft constraints are very expressive, and have a power­
ful computational machinery, they are not good at modeling 
and solving the sort of conditional preference statements that 
occur in the real world. Moreover, soft constraints are based 
on quantitative measures of preference, which tends to make 
preference elicitation more difficult. 

Qualitative user preferences have been widely studied in 
decision-theoretic Al [Doyle and Thomason, 1999]. Of par­
ticular interest are CP-nets [Boutilier et al, 1999]. These 
model statements of qualitative and conditional preference 
such as "I prefer a red dress to a yellow dress", or " I f the 
car is convertible, I prefer a soft top to a hard top". These 
are interpreted under the ceteris paribus (that is, "all else 
being equal") assumption. Preference elicitation in such 
a framework is intuitive, independent of the problem con­
straints, and suitable for naive users. However, the Achilles 
heel of CP-nets and other sophisticated qualitative prefer­
ence models [Lang, 2002] is the complexity of reasoning with 
them [Domshlak and Brafman, 2002; Boutilier et al, 2002]. 

Motivated by a product configuration application [Sabin 
and Weigel, 1998], we have developed a framework to reason 
simultaneously about qualitative conditional preference state­
ments and hard and soft constraints. In product configuration, 
the producer has hard (e.g., component compatibility) and 
soft (e.g., supply time) constraints, while the customer has 
preferences over the product features. We first investigate the 
complexity of reasoning about qualitative preference state­
ments, addressing in particular preferential consistency. To 
tackle the complexity of preference reasoning, we then intro­
duce two approximation schemes based on soft constraints. 

To the best of our knowledge, this work provides the first 
connection between the CP-nets and soft constraints machin­
ery. In addition, for product configuration problems or any 
problem with both hard and soft quantitative constraints as 
well as qualitative conditional preferences, this framework 
lets us treat the three kinds of information in a unifying en­
vironment. Finally, we compare the two approximations in 
terms of both expressivity and complexity. 
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2 Formalisms for Describing Preferences 
2.1 Soft constraints 
There are many formalisms for describing soft constraints. 
We use the c-semi-ring formalism [Bistarelli et al, 1997], 
which is equivalent to the valued-CSP formalism when total 
orders are used [Bistarelli et ai, 1996], as this generalizes 
many of the others. In brief, a soft constraint associates each 
instantiation of its variables with a value from a partially or­
dered set. We also supply operations for combining ( x ) and 

tion to an SCSP is a complete assignment to its variables. 
The preference value associated with a solution is obtained 
by multiplying the preference values of the projections of 
the solution to each constraint. One solution is better than 
another if its preference value is higher in the partial order. 
Finding an optimal solution for an SCSP is an NP-complete 
problem. On the other hand, given two solutions, checking 
whether one is preferable is easy: we compute the semi-ring 
values of the two solutions and compare the resulting values. 

2.2 CP-nets 

Soft constraints are the main tool for representing and rea­
soning about preferences in constraint satisfaction problems. 
However, they require the choice of a semi-ring value for each 
variable assignment in each constraint. They are therefore a 
quantitative method for expressing preferences. In many ap­
plications, it is more natural for users to express preferences 
via generic qualitative (usually partial) preference relations 
over variable assignments. For example, it is often more in­
tuitive for the user to say "I prefer red wine to white wine", 
rather than "Red wine has preference 0.7 and white wine has 

Figure 1: The CP-net graph for the example. 

preference 0.4". Of course, the former statement provides 
less information, but it does not require careful selection of 
preference values to maintain consistency. Moreover, soft 
constraints do not naturally represent conditional preferences, 
as in " I f they serve meat, then 1 prefer red wine to white 
wine". It is easy to see that both qualitative statements and 
conditions are essential ingredients in many applications. 

CP-nets [Boutilier et al, 1999] are a graphical model for 
compactly representing conditional and qualitative prefer­
ence relations. They exploit conditional preferential indepen­
dence by structuring a user's preferences under the ceteris 
paribus assumption. Informally, CP-nets are sets of condi­
tional ceteris paribus (CP) preference statements. For in­
stance, the statement "I prefer red wine to white wine if meat 
is served." asserts that, given two meals that differ only in 
the kind of wine served and both containing meat, the meal 
with a red wine is preferable to the meal with a white wine. 
Many philosophers (see [Hansson, 2001] for an overview) 
and AI researchers [Doyle and Wellman, 1994], have argued 
that most of our preferences are of this type. 



3 Consistency and Satisfiability 
Given a set of preference statements extracted from a user, 
we might be interested in testing consistency of the induced 
preference relation. In general, there is no single notion of 
preferential consistency [Hansson, 2001]. In [Boutilier et al.9 

1999], a CP-net N was considered consistent i f f the partial or­
dering induced by N is asymmetric, i.e. there exist at least 
one total ordering of the outcomes consistent with . How­
ever, in many situations, we can ignore cycles in the prefer­
ence relation, as long as these do not prevent a rational choice, 
i.e. there exist an outcome that is not dominated by any other 
outcome. In what follows, we refer to this as satisfiability^. It 
is easy to see that satisfiability is strictly weaker than asym­
metry, and that asymmetry implies satisfiability. We wil l con­
sider two cases: When the set of preference statements in­
duces a CP-net and, more generally, when preferences can 
take any form (and may not induce a CP-net). 

When defines an acyclic CP-net, the partial order in­
duced by is asymmetric [Boutilier et al, 1999]. How­
ever, for cyclic CP-nets, asymmetry is not guaranteed. In 
the more general case, we are given a set of conditional 
preference statements without any guarantee that they define 
a CP-net. Let the dependence graph of be defined sim­
ilarly to the graphs of CP-nets: the nodes stand for prob­
lem features, and a directed arc goes from if f 
contains a statement expressing preference on the values of 
Xj conditioned on the value of Xi. For example, the set 

does not induce a CP-
net (the two conditionals are not mutually exclusive), and the 
preference relation induced by is not asymmetric, despite 
the fact that the dependence graph of is acyclic. 

Note that while asymmetry implies satisfiability, the re­
verse does not hold in general. For example, the set above 
is not asymmetric, but it is satisfiable (the assignment acb is 
undominated). Given such a satisfiable set of statements, we 
can prompt the user with one of the undominated assignments 
without further refinement of its preference relation. Theo­
rem 1 shows that, in general, determining satisfiability of a 
set of statements is NP-complete. On the other hand, even 
for CP-nets, determining asymmetry is not known to be in 
NP [Domshlak and Brafman, 2002]. 

Theorem 1 SATISFIABILITY of a set of conditional prefer­
ence statements is NP-complete. 

Proof: Membership in NP is straightforward, as an assign­
ment is a polynomial-size witness that can be checked for 
non-dominance in time linear in the size of . To show hard­
ness, we reduce 3-SAT to our problem: Given a 3-cnf formula 
F , for each c l a u s e w e construct the condi­
tional preference statement: _ This set of 
conditional preferences is satisfiable i f f the original original 
formula F is satisfiable. D 

'in preference logic [Hansson, 2001], these notions of Consis­
tency as satisfi ability" and Consistency as asymmetry" correspond 
to the notions of eligibility and restrictable eligibility, respectively. 
However, we will use the former terms as they seem more intuitive. 

While testing satisfiability is hard in general, Theorem 2 
presents a wide class of statement sets that can be tested for 
satisfiability in polynomial time. 

Theorem 2 A set of conditional preference statements Vt, 
whose dependency graph is acyclic and has bounded node 
in-degree can be tested for satisfiability in polynomial time. 

clauses of the formula the proof of Theorem 1). However, 
when at most one condition is allowed in each preference 
statement, and the features are boolean, then SATISFIABIL­
ITY can be reduced to 2-SAT, and thus tested in polynomial 
time. Further study of additional tractable cases is clearly of 
both theoretical and practical interest. 

4 Approximating CP-nets with Soft 
Constraints 

In addition to testing consistency and determining preferen­
tially optimal outcomes, we can be interested in the preferen­
tial comparison of two outcomes. Unfortunately, determining 
dominance between a pair of outcomes with respect to a set 
of qualitative preferential statements under the ceteris paribus 
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assumption is PSPACE-complete in general [Lang, 2002], and 
is NP-hard even for acyclic CP-nets [Domshlak and Brafman, 
2002]. However, given a set of preference statements, in­
stead of using a preference relation induced by , one can 
use an approximation achieving tractability while 
sacrificing precision to some degree. Clearly, different ap­
proximations are not equally good, as they can be 
characterized by the precision with respect to time com­
plexity of generating », and time complexity of comparing 
outcomes with respect to ^>. In addition, it is vital that >> 
faithfully extends (i.e. should entail We 
call this information preserving. Another desirable property 
of approximations is that of preserving the ceteris paribus 
property (we call this the cp-condition for short). 

For acyclic CP-nets, two approximations that are informa­
tion preserving have been introduced, both comparing out­
comes in time linear in the number of features. The first 
is based on the relative position of the features in the CP-
net graph [Boutilier et al, 2002]. This approximation does 
not require any preprocessing of the CP-net. However, it 
is problematic when there are hard constraints. The sec­
ond, based on UCP-nets [Boutilier et al 2001], can be used 
as a quantitative approximation of acyclic CP-nets. UCP-
nets resemble weighted CSPs, and thus they can be used 
in constraint optimization using the soft constraints machin­
ery. However, generating UCP-nets is exponential in the size 
of CP-net node's Markov family2, and thus in the CP-net 
node out-degree. An additional related work is described in 
LMcGeachie and Doyle, 2002], where a numerical value func­
tion is constructed using graph-theoretic techniques by exam­
ining the graph of the preference relation induced by a set of 
preference statements. Note that this framework is also com­
putationally hard, except for some special cases. 

Here we study approximating CP-nets via soft constraints 
(SCSPs). This allows us to use the rich machinery under­
lying SCSPs to answer comparison queries in linear time. 
Moreover, this provides us a uniform framework to combine 
user preferences with both hard and soft constraints. Given 
an acyclic CP-net, we construct a corresponding SCSP in 
two steps. First, we build a constraint graph, which we call 
SC-net. Second, we compute the preferences and weights 
for the constraints in the SC-net, and this computation de­
pends on the actual semi-ring framework being used. Here 
we present and discuss two alternative semi-ring frameworks, 
based on min+ and SLO (Soft constraint Lexicographic Or­
dering) semi-rings, respectively. In both cases, our compu­
tation of preferences and weights ensures information pre­
serving and satisfies the cp-condition. We illustrate the con­
struction of the SCSP using the example in Figure 2, which 
continues our running example from Figure 1. 

Given a CP-net N, the corresponding SC-net Nc has two 
types of nodes: First, each feature is represented 
in Nc by a node Vx that stands for a SCSP variable with 

, Second, for each f e a t u r e s u c h 
w e have a n o d e w i t h 

Edges in correspond to 

2 Markov family of a node X contains X, its parents and children, 
and the parents of its children. 
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We now prove that our algorithm for weight computation 
ensures the cp-condition on the resulting set of soft con­
straints, and this also implies preserving the ordering infor­
mation with respect to the original CP-net. 

Theorem 4 (Complexity) Given an acyclic CP-net N with 
the node in-degree bounded by a constant, the construction of 
the corresponding SC-net based weighted SCSP Nc is poly­
nomial in the size ofN. 

Proof: If the CP-net has n nodes then the number of vertices 
V of the derived SC-net is at most 2n. In fact, in the SC-net 
a node representing a feature appears at most once and there 
is at most one node representing its parents. If the number of 
edges of the CP-net is e, then the number of edges E in the 
SC-net (including hard and soft edges) is at most e + n, since 
each edge in the CP-net corresponds to at most one constraint, 
and each feature in the CP-net generates at most one new soft 

4.2 SLO soft constraints 

Since the min+ approximation is a total ordering, it is a lin­
earization of the original partial ordering. In compensation, 
however, preferential comparison is now linear time. 



ences, and guide the user to a consistent scenario. Morover, 
we also plan to exploit the use of partially ordered prefer­
ences, as allowed in soft constraints, to better approximate 
CP nets. Finally, we intend to use machine learning tech­
niques to learn conditional preferences f rom comparisons of 
complete assignments. 
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Note that the SLO model both preserves information and 
ensures the cp-condition. The proof of this is straightforward 
and is omitted due to lack of space. The SLO model, l ike the 
weighted model, is very useful to answer dominance queries 
as it inherits the linear complexity f rom its semi-ring struc­
ture. In addit ion, the sequences of integers show directly the 
"goodness" of an assignment, i.e. where it actually satisfies 
the preference and where it violates it. 

5 Future Work 
We plan to use our approach in a preference elicitation sys­
tem in which we guarantee the consistency of the user prefer-

is to be preferred to the SLO model, as far as approximation 
is concerned. However, maximiz ing the min imum reward, as 
in any fuzzy framework [Schiex, 1992], has proved its useful­
ness in problem representation. The user may therefore need 
to balance the linearization of the order and the suitability of 
the representation provided. 

4.3 Comparing the two approximations 


