Proceedings Abstracts of the Twenty-Fifth International Joint Conference on Artificial Intelligence

Makeup Like a Superstar: Deep Localized Makeup Transfer Network / 2568
Si Liu, Xinyu Ou, Ruihe Qian, Wei Wang, Xiaochun Cao

In this paper, we propose a novel Deep Localized Makeup Transfer Network to automatically recommend the most suitable makeup for a female and synthesis the makeup on her face. Given a before-makeup face, her most suitable makeup is determined automatically. Then, both the before makeup and the reference faces are fed into the proposed Deep Transfer Network to generate the after-makeup face. Our end-to-end makeup transfer network have several nice properties including: (1) with complete functions: including foundation, lip gloss, and eye shadow transfer; (2) cosmetic specific: different cosmetics are transferred in different manners; (3) localized: different cosmetics are applied on different facial regions; (4) producing naturally looking results without obvious artifacts; (5) controllable makeup lightness: various results from light makeup to heavy makeup can be generated. Qualitative and quantitative experiments show that our network performs much better than the methods of [Guo and Sim, 2009] and two variants of NerualStyle [Gatys et al., 2015a].