Abstract
MPMA: Mixture Probabilistic Matrix Approximation for Collaborative Filtering / 1382
Chao Chen, Dongsheng Li, Qin Lv, Junchi Yan, Stephen M. Chu, Li Shang
Matrix approximation (MA) is one of the most popular techniques for collaborative filtering (CF). Most existing MA methods train user/item latent factors based on a user-item rating matrix and then use the global latent factors to model all users/items. However, globally optimized latent factors may not reflect the unique interests shared among only subsets of users/items, without which unique interests of users may not be accurately modelled. As a result, existing MA methods, which cannot capture the uniqueness of different user/item, cannot provide optimal recommendation. In this paper, a mixture probabilistic matrix approximation (MPMA) method is proposed, which unifies globally optimized user/item feature vectors (on the entire rating matrix) and locally optimized user/item feature vectors (on subsets of user/item ratings) to improve recommendation accuracy. More specifically, in MPMA, a method is developed to find both globally and locally optimized user/item feature vectors. Then, a Gaussian mixture model is adopted to combine global predictions and local predictions to produce accurate rating predictions. Experimental study using MovieLens and Netflix datasets demonstrates that MPMA outperforms five state-of-the-art MA based CF methods in recommendation accuracy with good scalability.