Abstract

Proceedings Abstracts of the Twenty-Fourth International Joint Conference on Artificial Intelligence

Automatic Extraction of References to Future Events from News Articles Using Semantic and Morphological Information / 4385
Yoko Nakajima
PDF

In my doctoral dissertation I investigate patterns appearing in sentences referring to the future. Such patterns are useful in predicting future events. I base the study on a multiple newspaper corpora. I firstly perform a preliminary study to find out that the patterns appearing in future-reference sentences often consist of disjointed elements within a sentence. Such patterns are also usually semantically and grammatically consistent, although lexically variant. Therefore, I propose a method for automatic extraction of such patterns, applying both grammatical (morphological) and semantic information to represent sentences in morphosemantic structure, and then extract frequent patterns, including those with disjointed elements. Next, I perform a series of experiments, in which I firstly train fourteen classifier versions and compare them to choose the best one. Next, I compare my method to the state-of-the-art, and verify the final performance of the method on a new dataset. I conclude that the proposed method is capable to automatically classify future-reference sentences, significantly outperforming state-of-the-art, and reaching 76% of F-score.