Abstract
Pre-release Prediction of Crowd Opinion on Movies by Label Distribution Learning / 3511
Xin Geng, Peng Hou
PDF
This paper studies an interesting problem: is it possible to predict the crowd opinion about a movie before the movie is actually released? The crowd opinion is here expressed by the distribution of ratings given by a sufficient amount of people. Consequently, the pre-release crowd opinion prediction can be regarded as a Label Distribution Learning (LDL) problem. In order to solve this problem, a Label Distribution Support Vector Regressor (LDSVR) is proposed in this paper. The basic idea of LDSVR is to fit a sigmoid function to each component of the label distribution simultaneously by a multi-output support vector machine. Experimental results show that LDSVR can accurately predict peoples’s rating distribution about a movie just based on the pre-release metadata of the movie.