Proceedings Abstracts of the Twenty-Fourth International Joint Conference on Artificial Intelligence

Optimal Bayesian Hashing for Efficient Face Recognition / 3430
Qi Dai, Jianguo Li, Jun Wang, Yurong Chen, Yu-Gang Jiang

In practical applications, it is often observed that high-dimensional features can yield good performance, while being more costly in both computation and storage. In this paper, we propose a novel method called Bayesian Hashing to learn an optimal Hamming embedding of high-dimensional features, with a focus on the challenging application of face recognition. In particular, a boosted random FERNs classification model is designed to perform efficient face recognition, in which bit correlations are elaborately approximated with a random permutation technique. Without incurring additional storage cost, multiple random permutations are then employed to train a series of classifiers for achieving better discrimination power. In addition, we introduce a sequential forward floating search (SFFS) algorithm to perform model selection, resulting in further performance improvement. Extensive experimental evaluations and comparative studies clearly demonstrate that the proposed Bayesian Hashing approach outperforms other peer methods in both accuracy and speed. We achieve state-of-the-art results on well-known face recognition benchmarks using compact binary codes with significantly reduced computational overload and storage cost.