Abstract

Proceedings Abstracts of the Twenty-Fourth International Joint Conference on Artificial Intelligence

Prior-Based Dual Additive Latent Dirichlet Allocation for User-Item Connected Documents / 1405
Wei Zhang, Jianyong Wang
PDF

User-item connected documents, such as customer reviews for specific items in online shopping website and user tips in location-based social networks, have become more and more prevalent recently. Inferring the topic distributions of user-item connected documents is beneficial for many applications, including document classification and summarization of users and items. While many different topic models have been proposed for modeling multiple text, most of them cannot account for the dual role of user-item connected documents (each document is related to one user and one item simultaneously) in topic distribution generation process. In this paper, we propose a novel probabilistic topic model called Prior-based Dual Additive Latent Dirichlet Allocation (PDA-LDA). It addresses the dual role of each document by associating its Dirichlet prior for topic distribution with user and item topic factors, which leads to a document-level asymmetric Dirichlet prior. In the experiments, we evaluate PDA-LDA on several real datasets and the results demonstrate that our model is effective in comparison to several other models, including held-out perplexity on modeling text and document classification application.